Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
China National Knowledge Infrastructure(CNKI)
Chinese Science Abstracts Database(CSAD)
JST China
SCOPUS
ZHANG Fang-juan, SHI Dong-he, WANG Li-hong. Nonlinear mappings preserving multiple new product on factor von Neumann[J]. Journal of Yunnan University: Natural Sciences Edition, 2017, 39(5): 733-738. DOI: 10.7540/j.ynu.20170113
Citation:
ZHANG Fang-juan, SHI Dong-he, WANG Li-hong. Nonlinear mappings preserving multiple new product on factor von Neumann[J]. Journal of Yunnan University: Natural Sciences Edition, 2017, 39(5): 733-738. DOI: 10.7540/j.ynu.20170113
ZHANG Fang-juan, SHI Dong-he, WANG Li-hong. Nonlinear mappings preserving multiple new product on factor von Neumann[J]. Journal of Yunnan University: Natural Sciences Edition, 2017, 39(5): 733-738. DOI: 10.7540/j.ynu.20170113
Citation:
ZHANG Fang-juan, SHI Dong-he, WANG Li-hong. Nonlinear mappings preserving multiple new product on factor von Neumann[J]. Journal of Yunnan University: Natural Sciences Edition, 2017, 39(5): 733-738. DOI: 10.7540/j.ynu.20170113
Nonlinear mappings preserving multiple new product on factor von Neumann
Let A,B be two factor von Neumann algebras and pn(A1,A2,…,An) be the multiple new product.Then a nonlinear bijective mapping ϕ :A→Bsatisfies ϕ(pn(A1,A2,…,An))=pn(ϕ(A1),ϕ(A2),…,ϕ(An)) if and only if ϕ is a*-isomorphism.