Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
China National Knowledge Infrastructure(CNKI)
Chinese Science Abstracts Database(CSAD)
JST China
SCOPUS
LIN Na-na, ZHANG Li-na. Coexistence solutions of a Ivlev-type predator-prey model with cross-diffusion and a protection zone[J]. Journal of Yunnan University: Natural Sciences Edition, 2020, 42(2): 213-219. DOI: 10.7540/j.ynu.20190233
Citation:
LIN Na-na, ZHANG Li-na. Coexistence solutions of a Ivlev-type predator-prey model with cross-diffusion and a protection zone[J]. Journal of Yunnan University: Natural Sciences Edition, 2020, 42(2): 213-219. DOI: 10.7540/j.ynu.20190233
LIN Na-na, ZHANG Li-na. Coexistence solutions of a Ivlev-type predator-prey model with cross-diffusion and a protection zone[J]. Journal of Yunnan University: Natural Sciences Edition, 2020, 42(2): 213-219. DOI: 10.7540/j.ynu.20190233
Citation:
LIN Na-na, ZHANG Li-na. Coexistence solutions of a Ivlev-type predator-prey model with cross-diffusion and a protection zone[J]. Journal of Yunnan University: Natural Sciences Edition, 2020, 42(2): 213-219. DOI: 10.7540/j.ynu.20190233
Coexistence solutions of a Ivlev-type predator-prey model with cross-diffusion and a protection zone
We are concerned with the stationary problem of a Ivlev-type predator-prey model with cross-diffusion and a protection zone. The existence of coexistence states is discussed by using the eigenvalue theory and bifurcation theory. As a result, it is shown that the cross-diffusion is beneficial for species coexistence.