• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHANG Wen hui, XIN Hong juan. m-Gorenstein projective modules over formal lower triangular matrix ring of order nJ. Journal of Yunnan University: Natural Sciences Edition. DOI: 10.7540/j.ynu.20230105
Citation: ZHANG Wen hui, XIN Hong juan. m-Gorenstein projective modules over formal lower triangular matrix ring of order nJ. Journal of Yunnan University: Natural Sciences Edition. DOI: 10.7540/j.ynu.20230105

m-Gorenstein projective modules over formal lower triangular matrix ring of order n

  • m -Gorenstein projective modules are investigated over formal lower triangular matrix ring T of order n . Let U_ij(1\leq j < i\leq n) be a \left(A_i,A_j\right) -bimodule, U_A_j has a finite flat dimension and A_iU is projective. It is proved that if M is a m -Gorenstein projective left T -module, then M_1 is a \left(m-1\right) -Gorenstein projective left A_1 -module, \varphi _i+1,i^M is a monomorphism for any 1\leq i\leq n-1 , and \textCoker\varphi _i+1,i^M is a \left(m-1\right) -Gorenstein projective left A_i+1 -module; Conversely, if M_1 is a m -Gorenstein projective left A_1 - module, \varphi _i+1,i^M is a monomorphism, and Coker \varphi _i+1,i^M is a m -Gorenstein projective left A_i+1 -module, then M is a m -Gorenstein projective left T -module.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return