m 
-Gorenstein projective modules are investigated over formal lower triangular matrix ring
T 
of order
n 
. Let
U_ij(1\leq j < i\leq n) 
be a
\left(A_i,A_j\right) 
-bimodule,
U_A_j 
has a finite flat dimension and
A_iU 
is projective. It is proved that if
M 
is a
m 
-Gorenstein projective left
T 
-module, then
M_1 
is a
\left(m-1\right) 
-Gorenstein projective left
A_1 
-module,
\varphi _i+1,i^M 
is a monomorphism for any
1\leq i\leq n-1 
, and
\textCoker\varphi _i+1,i^M 
is a
\left(m-1\right) 
-Gorenstein projective left
A_i+1 
-module; Conversely, if
M_1 
is a
m 
-Gorenstein projective left
A_1 
- module,
\varphi _i+1,i^M 
is a monomorphism, and Coker
\varphi _i+1,i^M 
is a
m 
-Gorenstein projective left
A_i+1 
-module, then
M 
is a
m 
-Gorenstein projective left
T 
-module.