分裂的正则双Hom-Poisson代数结构

The structure of split regular biHom-Poisson algebras

  • 摘要: 作为分裂的正则Hom-Poisson代数的自然推广, 介绍了一类分裂的正则双Hom-Poisson代数. 利用这类代数根连通的发展技巧, 证明了分裂的正则双Hom-Poisson代数B可写成 B = U + \sum\limits_\alpha I_\alpha , 其中U为极大交换子代数H的子空间,IαB的理想, 若αβ,则满足 I_\alpha ,I_\beta + I_\alpha I_\beta = 0. 在一定条件下, 描述了B的最大长度和它的半单性.

     

    Abstract: We introduce the class of split regular biHom-Poisson algebras as the natural generalization of split regular Hom-Poisson algebras. By developing techniques of connections of roots for this kind of algebras, we show that such a split regular biHom-Poisson algebras B is of the form B = U + \sum\nolimits_\alpha I_\alpha with U a subspace of a maximal abelian subalgebra H and any I_\alpha , a well described ideal of B, satisfying I_\alpha ,I_\beta + I_\alpha I_\beta = 0 if \alpha \ne \beta . Under certain conditions, in the case of B being of maximal length, the simplicity of the algebra is characterized.

     

/

返回文章
返回