李荡, 李远勋, 张杨, 常飞. N、Pt共掺杂三维海胆型TiO2制备及光电性能研究[J]. 云南大学学报(自然科学版), 2019, 41(3): 537-544. doi: 10.7540/j.ynu.20180263
引用本文: 李荡, 李远勋, 张杨, 常飞. N、Pt共掺杂三维海胆型TiO2制备及光电性能研究[J]. 云南大学学报(自然科学版), 2019, 41(3): 537-544. doi: 10.7540/j.ynu.20180263
LI Dang, LI Yuan-xun, ZHANG Yang, CHANG Fei. Preparation and photoelectric properties of N, Pt co−doped 3D sea urchin TiO2[J]. Journal of Yunnan University: Natural Sciences Edition, 2019, 41(3): 537-544. DOI: 10.7540/j.ynu.20180263
Citation: LI Dang, LI Yuan-xun, ZHANG Yang, CHANG Fei. Preparation and photoelectric properties of N, Pt co−doped 3D sea urchin TiO2[J]. Journal of Yunnan University: Natural Sciences Edition, 2019, 41(3): 537-544. DOI: 10.7540/j.ynu.20180263

N、Pt共掺杂三维海胆型TiO2制备及光电性能研究

Preparation and photoelectric properties of N, Pt co−doped 3D sea urchin TiO2

  • 摘要: 采用水热法制备了N、Pt共掺杂三维海胆型TiO2材料,通过X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、紫外−可见(UV−Vis)吸收光谱对材料进行表征分析,同时采用电化学方法对其进行光电转化性能测试. 结果表明,N取代TiO2中O晶格结点的位置,Pt取代Ti晶格结点,成功地掺杂至TiO2晶格中. N、Pt的掺杂不仅有利于TiO2从金红石相向锐钛矿相转变,而且对其晶体的生长也起了抑制的作用. N、Pt共掺杂的TiO2是由具有共同中心的纳米棒组装而成的三维海胆球形结构,球的尺寸分布较窄,直径约为1~2 μm,组装纳米棒的直径约为7~8 nm,长度约为100~150 nm. 当掺杂摩尔比为5∶5时,样品在紫外和可见光的吸收达到最高,UV−Vis吸收边红移将近100 nm. 从光电转换图和线性扫描伏安曲线可以看出,在比表面积、带隙宽度、晶型、载流子数量及元素间协同作用下,掺杂摩尔比为5∶5样品的光电转化效率高达22.4%,为纯海胆型TiO2的4.48倍. 所有试剂均为分析纯.

     

    Abstract: In the study, 3D sea urchin TiO2 with N, Pt co-doped were successfully prepared by hydrothermal method. The material were characterized via XRD, XPS, SEM, TEM, UV-Vis photoelectric performance test. The results show that N, Pt were successful doped into the TiO2, and N substitutes for the position of the O lattice site in TiO2, and Pt replaces the Ti lattice. The doping of N and Pt is not only beneficial to the transformation of TiO2 from the rutile phase to the anatase phase, but also inhibits the growth of its crystals. The N, Pt co-doped TiO2 are 3D sea urchin spherical structure composed of nanorods with a common center. The size distribution of the spheres is narrow; the diameter is approximately 1—2 μm; and the diameter of the assembled nanorods is approximately 7—8 nm, length about 100—150 nm (SEM,TEM). Moreover, when the doping ratio is 5 to 5, the absorption of the sample in the ultraviolet and visible light reaches the summit, and the UV-Vis absorption edge red shifts to nearly 100 nm. As can be seen from the photoelectric conversion chart and Linear sweep voltammograms that the photoelectric conversion efficiency of the 5to5 doping ratio was as high as 22.4%, 4.48 times higher than that of the pure sea urchin TiO2 under the influence of specific surface area, bandgap width, crystal shape, number of carriers, and synergy between elements.

     

/

返回文章
返回