秀丽隐杆线虫病原逃避行为调控的分子机制研究进展

邹伟 王琦 林容 黄晓玮

引用本文:
Citation:

秀丽隐杆线虫病原逃避行为调控的分子机制研究进展

    作者简介: 邹伟(1988-),男,云南人,讲师,主林从事病原与宿主相互作用关系研究.E-mial:280018988@qq.com.;
    通讯作者: 黄晓玮, xwhuang@ynu.edu.cn
  • 基金项目:

    国家自然科学基金(31460024)

    云南省教育厅科学研究基金(2017ZDX159).

Molecular mechanisms of the avoidance behavior induced by pathogenic bacteria in Caenorhabditis elegans

    Corresponding author: HUANG Xiao-wei, xwhuang@ynu.edu.cn
  • 摘要: 线虫(Caenorhabditis elegans)生活在复杂生态系统的环境中,具备对环境刺激变化的敏锐感知和应对能力.除常规非生物或生物逆境,如不适宜的气味、温度和盐离子可使线虫产生逃避反应外,病原细菌侵染也能诱发其逃避行为,从而有效帮助线虫辨别病原细菌和细菌食物、迅速逃离危险,是线虫提高生存率的重要策略.现有的研究证明,病原菌铜绿假单胞PA14(Pseudomonas aeruginosa,简写为PA14)、沙雷式菌(Serentia marcescens)、苏云金芽孢杆菌(Bacillus thuringiensis)等都会诱发逃避.根据逃避行为的方式和作用机制不同可将其分为两类:一类是应对病原伤害形成的本能逃避行为;第二类是学习记忆产生的学习型逃避行为.该文将针对秀丽隐杆线虫的两类病原逃避行为的分子机制进行综述.
  • [1] HÖGLUND E,WELTZIEN F A,SCHJOLDEN J,et al.Avoidance behavior and brain monoamines in fish[J].Brain Research,2005,1032(1-2):104-110.
    [2] BEALE E,LI G,TAN M W,et al.Caenorhabditis elegans senses bacterial autoinducers.[J].Applied & Environmental Microbiology,2006,72(7):5 135-5 137.
    [3] BARGMANN C I.Chemosensation in C elegans[Z]. Wormbook the online review of C elegans Biology,2006:1-29.
    [4] SHTONDA B B,AVERY L.Dietary choice behavior in Caenorhabditis elegans[J].Journal of Experimental Biology,2006,209(1):89-102.
    [5] HA H,HENDRICKS M,SHEN Y,et al.Functional organization of a neural network for aversive olfactory learning in Caenorhabditis elegans[J].Neuron,2010,68(6):1173-1186.
    [6] HARRIS G,SHEN Y,HA H,et al.Dissecting the signaling mechanisms underlying recognition and preference of food odors[J].Journal of Neuroscience the Official Journal of the Society for Neuroscience,2014,34(28):9389.
    [7] ZHANG Y,LU H,BARGMANN C I.Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans.[J].Nature,2005,438(7065):179-184.
    [8] PUJOL N,LINK E M,LIU L X,et al.A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans.[J].Current Biology,2001,11(11):809-821.
    [9] SHIVERS R P,KOOISTRA T,CHU S W,et al.Tissue-specific activities of an immune signaling module regulate physiological responses to pathogenic and nutritional bacteria in C.elegans[J].Cell Host & Microbe,2009,6(4):321-330.
    [10] COUILLAULT C,PUJOL N,REBOUL J,et al.TLR-independent control of innate immunity in Caenorhabditiselegans by the TIR domain adaptor protein TIR-1,an ortholog of human SARM[J].Nature Immunology,2004,5(5):488-494.
    [11] MELO J,RUVKUN G.Inactivation of conserved C.elegans,Genes Engages Pathogen- and Xenobiotic-Associated Defenses[J].Cell,2012,149(2):452.
    [12] LUO S,KLEEMANN G A,ASHRAF J M,et al.TGF-β and insulin signaling regulate reproductive aging via oocyte and germline quality maintenance[J].Cell,2010,143(2):299-312.
    [13] ZUGASTI O,EWBANK J J.Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-beta signaling pathway in Caenorhabditis elegans epidermis.[J].Nature Immunology,2009,10(3):249-256.
    [14] ZHANG X D,ZHANG Y.DBL-1,a TGF-β,is essential for Caenorhabditis elegans aversive olfactory learning[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(42):17081-17086.
    [15] REN P,LIM C S,JOHNSEN R,et al.Control of C.elegans larval development by neuronal expression of a TGF-β homolog[J].Science,1996,274(5291):1389-1391.
    [16] SCHACKWITZ W S,INOUE T,THOMAS J H.Chemosensory neurons function in parallel to mediate a pheromone response in C.elegans.[J].Neuron,1996,17(4):719-728.
    [17] MEISEL J D,PANDA O,MAHANTI P,et al.Chemosensation of bacterial secondary metabolites modulates neuroendocrine signaling and behavior of C.elegans[J].Cell,2014,159(2):267-280.
    [18] CHEN Z,HENDRICKS M,CORNILS A,et al.Two Insulin-like peptides antagonistically regulate aversive olfactory learning in C.elegans[J].Neuron,2013,77(3):572-585.
    [19] PRADEL E,ZHANG Y,PUJOL N,et al.Detection and Avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans[J].Proc Natl Acad Sci U S A,2007,104(7):2295-2300.
    [20] HASSHOFF M,BÖHNISCH C,TONN D, et al. The role of Caenorhabditis elegans insulin-like signaling in the behavioral avoidance of pathogenic Bacillus thuringiensis[J].The FASEB Journal,2007,21(8):1801-1812.
    [21] CHANG H C,PAEK J,KIM D H.Natural polymorphisms in C elegans HECW-1 E3 ligase affect pathogen avoidance behaviour.[J].Nature,2011,480(7378):525-529.
    [22] GRAY J M,KAROW D S,LU H,et al.Oxygen sensation and social feeding mediated by a C elegans guanylate cyclase homologue.[J].Nature,2004,430(6997):317.
    [23] DE B M,MARICQ A V.Neuronal substrates of complex behaviors in C elegans.[J].Annual Review of Neuroscience,2005,28(28):451.
    [24] GLORIA-SORIA A,AZEVEDO R B.npr-1 regulates foraging and dispersal strategies in Caenorhabditis elegans[J].Current Biology,2008,18(21):1694-1699.
    [25] REDDY K C,ANDERSEN E C,KRUGLYAK L,et al.A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C elegans[J].Science,2009,323(5912):382-384.
    [26] BARGMANN C I.Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans[J].Nature,2003,424(6946):277.
    [27] MCELWEE J J,SCHUSTER E,BLANC E,et al.Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance[J].Journal of Biological Chemistry,2004,279(43):44533.
    [28] TOMIOKA M,ADACHI T,SUZUKI H,et al.The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans.[J].Neuron,2006,51(5):613-625.
    [29] KODAMA E,KUHARA A,MOHRI-SHIOMI A,et al.Insulin-like signaling and the neural circuit for integrative behavior in C.elegans.[J].Genes & Development,2006,20(21):2955-2960.
    [30] LIN C H,TOMIOKA M,PEREIRA S,et al.Insulin signaling plays a dual role in Caenorhabditis elegans memory acquisition and memory retrieval[J].Journal of Neuroscience,2010,30(23):8001-8011.
    [31] SUO S,KIMURA Y, VAN TOL H H.Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans[J].Journal of Neuroscience,26(40):10082-10090.
    [32] GLAUSER D A,CHEN W C,AGIN R,et al.Heat Avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans[J].Genetics,2011,188(1):91-103.
    [33] KIMURA K D,FUJITA K,KATSURA I.Enhancement of odor avoidance regulated by dopamine signaling in Caenorhabditis elegans.[J].Journal of Neuroscience,2010,30(48):16365-16375.
  • [1] 杨俊誉魏世杰苏代发陈杉艳罗志伟沈雪梅赖泳红ArslanJamil童江云崔晓龙 . 草莓白粉病病原菌及分子防御机制的研究进展. 云南大学学报(自然科学版), 2019, 41(4): 842-850. doi: 10.7540/j.ynu.20180733
    [2] 王纪爱乔敏余珊胡敏张克勤黄晓玮 . 三苯甲烷类染料脱色细菌降解途径及其机制研究进展. 云南大学学报(自然科学版), 2014, 36(2): 281-289. doi: 10.7540/j.ynu.20130312
    [3] 张为杨斌蔡伊易俊年张杰 . 水溶液中NaF缔合行为的分子动力学研究. 云南大学学报(自然科学版), 2019, 41(4): 772-779. doi: 10.7540/j.ynu.20180726
    [4] 杜宇段禄华周剑和万忠曹云华李斌陈光勇寸东义 . 长针科线虫2种传毒种类和3种非传毒种类分子鉴定和亲缘分析. 云南大学学报(自然科学版), 2009, 31(1): 84-89 .
    [5] 桑鹏杨丕仁许丹朱月勋沈建新杨力权 . 碱性和中性食线虫真菌丝氨酸蛋白酶动力学行为差异研究*. 云南大学学报(自然科学版), 2018, 40(5): 1006-1016. doi: 10.7540/j.ynu.20180135
    [6] 李婕李永川杨虹余磊黄琼 . 甘蔗黑腐病病原菌的鉴定. 云南大学学报(自然科学版), 2014, 36(1): 139-143. doi: 10.7540/j.ynu.20130222
    [7] 张锋辉包学才刘伟荣符茂胜 . 移动云:架构、机制、挑战. 云南大学学报(自然科学版), 2019, 41(3): 484-496. doi: 10.7540/j.ynu.20180361
    [8] 赵智娴董锦艳莫明和董琳茜张克勤 . 日本亮耳菌对植物病原真菌的拮抗试验. 云南大学学报(自然科学版), 2002, 24(6): 475-477.
    [9] 赵振玲张金渝张智慧杨美权杨维泽金航范正华 . 云南当归软腐病的危害性及病原鉴定. 云南大学学报(自然科学版), 2010, 32(2): 227-232, .
    [10] 杨爱明袁波付廷惠张希麟杨宇林理忠 . PVC片材脆断机制的探查及分析. 云南大学学报(自然科学版), 2003, 25(5): 419-422.
    [11] 吴拥军赵德刚詹寿年李耀中 . 转ChIFN-γ基因烟草抗虫机制研究. 云南大学学报(自然科学版), 2010, 32(4): 473-479 .
    [12] 王若男常俊宗容和家慧罗文君 . 基于损失制轮询调度的频谱接入机制研究. 云南大学学报(自然科学版), 2018, 40(1): 50-56. doi: 10.7540/j.ynu.20170266
    [13] 庞礼军汪荣凯令狐荣锋陈世国杨向东 . HF分子基态(X1∑+)的分子结构与势能函数. 云南大学学报(自然科学版), 2007, 29(2): 156-159.
    [14] 柴丽红王涛崔晓龙彭谦徐丽华姜成林 . 青海柯柯盐湖16株细菌的ARDRA筛选及系统发育初步分析. 云南大学学报(自然科学版), 2003, 25(6): 541-544.
    [15] 张振荣布云红赖泳红刘彦中杨梦莉崔晓龙王永霞肖炜王天强 . 不同功能菌剂对连作烟叶农艺性状和根际土壤细菌的影响. 云南大学学报(自然科学版), 2012, 34(S1): 116-121.
    [16] 奚家勤刘海萍陈想想莫明和 . 解淀粉芽孢杆菌的GFP标记及土壤抑细菌作用分析. 云南大学学报(自然科学版), 2017, 39(4): 677-683. doi: 10.7540/j.ynu.20160758
    [17] 茶琦雁朵金玲周兴奎李淼马莉莫明和 . 贵州天洞洞穴的细菌群落特征及产酶菌株分析. 云南大学学报(自然科学版), 2019, 41(2): 390-397. doi: 10.7540/j.ynu.20180371
    [18] 王玉倩潘舟强翁庆北肖炜龚敏卢玉兵陈晓旺李敏方正 . 云台山白云岩表层土可培养细菌多样性. 云南大学学报(自然科学版), 2015, 37(4): 616-622. doi: 10.7540/j.ynu.20140487
    [19] 缪恩铭耿永勤陈建华杨叶昆徐济仓魏玉玲李雪梅 . 维生素E热裂解行为研究. 云南大学学报(自然科学版), 2012, 34(6): 695-700.
    [20] 焦红虹周浩方淇 . 基于光流场的时间分段网络行为识别. 云南大学学报(自然科学版), 2019, 41(1): 36-45. doi: 10.7540/j.ynu.20170750
  • 加载中
计量
  • 文章访问数:  354
  • HTML全文浏览量:  65
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-29
  • 刊出日期:  2018-11-10

秀丽隐杆线虫病原逃避行为调控的分子机制研究进展

    作者简介:邹伟(1988-),男,云南人,讲师,主林从事病原与宿主相互作用关系研究.E-mial:280018988@qq.com.
    通讯作者: 黄晓玮, xwhuang@ynu.edu.cn
  • 1. 昆明医科大学 公共卫生学院,云南 昆明 650500;
  • 2. 云南大学 省部共建云南生物资源保护与利用国家重点实验室,云南 昆明 650091
基金项目:  国家自然科学基金(31460024) 云南省教育厅科学研究基金(2017ZDX159).

摘要: 线虫(Caenorhabditis elegans)生活在复杂生态系统的环境中,具备对环境刺激变化的敏锐感知和应对能力.除常规非生物或生物逆境,如不适宜的气味、温度和盐离子可使线虫产生逃避反应外,病原细菌侵染也能诱发其逃避行为,从而有效帮助线虫辨别病原细菌和细菌食物、迅速逃离危险,是线虫提高生存率的重要策略.现有的研究证明,病原菌铜绿假单胞PA14(Pseudomonas aeruginosa,简写为PA14)、沙雷式菌(Serentia marcescens)、苏云金芽孢杆菌(Bacillus thuringiensis)等都会诱发逃避.根据逃避行为的方式和作用机制不同可将其分为两类:一类是应对病原伤害形成的本能逃避行为;第二类是学习记忆产生的学习型逃避行为.该文将针对秀丽隐杆线虫的两类病原逃避行为的分子机制进行综述.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回