非齐度量测度空间上Calderón-Zygmund算子交换子的有界性

Boundedness of commutators of Calderón-Zygmund operators on spaces with non-homogeneous metric measure

  • 摘要: (X,d,\mu ) 是一个满足上双倍条件和几何双倍条件的非齐度量测度空间,利用非齐度量测度空间的性质,借助于奇异积分算子有界性理论,基于非齐度量测度空间上Herz空间的刻画以及Herz型Hardy空间的原子分解和分子分解,证明了Calderón-Zygmund算子与Lipschitz函数生成的交换子在非齐度量测度空间上Herz型空间的有界性.

     

    Abstract: Let (X,d,\mu ) be a non-homogeneous metric measure space satisfying the geometrically doubling and the upper doubling conditions, by the properties of the non-homogeneous metric measure spaces, using the theory of boundedness for singular integral operators, based on the characterization of Herz spaces and the atomic and molecular decompesitions of Herz type Hardy spaces with non-homogeneous metric measure, the authors proved that the commutators generated by Calderon-Zygmund operators and Lipschitz functions are bounded on Herz type spaces with non-homogeneous metric measure.

     

/

返回文章
返回