粗梗稠李的化学成分研究

李瑞 倪春艳 矣林炆 胡琳 黄相中 李刚 陈毅坚 蒋孟圆

引用本文:
Citation:

粗梗稠李的化学成分研究

    作者简介: 李 瑞(1996−),女,云南人,硕士生,主要研究天然药物化学. E-mail:825393684@qq.com;
    通讯作者: 蒋孟圆, jmy0778@163.com

Chemical constituents of Padus napaulensis

    Corresponding author: JIANG Meng-yuan, jmy0778@163.com
  • 摘要: 运用多种色谱分离方法对粗梗稠李95%乙醇提取物进行化学成分研究,分离鉴定了10个化合物,分别为5(6)-gluten-3α-ol( 1 )、乌苏酸( 2 )、齐墩果酸( 3 )、羽扇豆醇( 4 )、无羁萜( 5 )、羽扇烯酮( 6 )、β-谷甾醇( 7 )、豆甾醇( 8 )、亚麻酸乙酯( 9 )和亚麻酸( 10 ).
  • 图 1  粗梗稠李化合物110结构

    Figure 1.  The structures of compounds 110 from Padus napaulensis

    表 1  化合物110 13C NMR数据(100 MHz)

    Table 1.  13C NMR data of compounds 1−10

    碳位1a2b3a4a5a6a7a8a9a10c
    118.338.438.638.322.239.737.437.414.2177.7
    227.922.927.327.441.334.331.832.160.2135.1
    376.576.879.277.4214.9218.472.072.0173.826.1
    441.038.539.439.358.147.542.442.534.428.2
    5141.752.455.454.942.255.0140.9140.925.030.2
    6122.217.118.518.241.119.8121.9121.929.130.3
    723.836.332.834.218.133.732.032.129.130.7
    847.538.238.940.852.940.932.132.129.130.2
    935.047.047.850.237.349.950.350.329.6131.1
    1049.838.437.336.959.237.036.736.727.2128.9
    1133.223.323.621.035.221.621.221.4130.226.5
    1230.5124.6122.825.230.325.339.939.9127.1129.2
    1338.0138.2143.838.239.138.342.542.425.6129.2
    1439.441.741.842.938.143.056.956.9128.226.4
    1534.732.727.826.631.827.624.524.5128.2128.2
    1635.221.123.735.635.835.628.429.325.532.7
    1730.246.846.743.029.843.156.256.2127.721.5
    1843.254.841.248.342.848.412.012.0131.914.6
    1936.130.246.048.035.548.119.519.520.4
    2028.428.330.8150.927.9151.020.042.414.2
    2132.227.634.029.832.630.018.921.2
    2239.136.532.640.039.540.134.1138.5
    2329.128.328.328.26.426.826.3129.4
    2425.616.915.715.814.321.246.051.4
    2516.416.115.516.017.716.129.331.8
    2618.615.317.316.020.015.936.321.2
    2719.827.026.114.618.414.619.219.2
    2832.5178.3183.318.032.218.123.225.6
    2929.218.033.2109.434.7109.512.112.1
    3034.723.823.119.731.519.4
    溶剂:a. CDCl3;b. DMSO-d6;c. CD3OD.
    下载: 导出CSV
  • [1] 杨新周. 粗梗稠李色素提取工艺优化及稳定性研究[J]. 化学研究与应用, 2019, 31(11): 1 945-1 952. DOI:  CNKI:SUN:HXYI.0.2019-11-015. Yang X Z. Study on the optimization of extraction and stability of pigment obtained from Padus napaulensis[J]. Chemical Research and Application, 2019, 31(11): 1 945-1 952.
    [2] 李晓娇, 何健民, 韩德仙, 等. 粗梗稠李中花色苷的提取及其理化性质和稳定性研究[J]. 食品与发酵工业, 2020, 46(15): 208-216. DOI:  10.13995/j.cnki.11-1802/ts.023412. Li X J, He J M, Han D X, et al. Study on the extraction physical and chemical properties and stability of anthocyanins from Padus napaulensis[J]. Food and Fermentation Industries, 2020, 46(15): 208-216.
    [3] 中国植物志编辑委员会. 中国植物志: 38卷[M]. 北京: 科学出版社, 1986: 104.

    Flora of China Editor Board. Flora of China (Vol 38)[M]. Beijing: Science Press, 1986: 104.
    [4] Konić-Ristić A, Šavikin K, Zdunić G, et al. Biological activity and chemical composition of different berry juices[J]. Food Chemistry, 2011, 125(4): 1 412-1 417. DOI:  10.1016/j.foodchem.2010.10.018.1217.
    [5] Chen Y F, Shibu M A, Fan M J, et al. Purple rice anthocyanin extract protects cardiac function in STZ-induced diabetes rat hearts by inhibiting cardiac hypertrophy and fibrosis[J]. The Journal of Nutritional Biochemistry, 2016, 31: 98-105. DOI:  10.1016/j.jnutbio.2015.12.020.
    [6] Anahita A, Indu S, Roselyn R M, et al. Cytoprotective effects of berry anthocyaninns against induced oxidative stress and inflammation in primary human diabetic aortic endothelialcells[J]. Chemicobiological interacttions, 2020, 317: 108 940. DOI:  10.1016/j.cbi.2020.108940.
    [7] Launer L J, Habicht J P. Concepts about infant health, growth, and weaning: A comparison between nutritional scientists and madurese mothers[J]. SciMed Technologies, 1989, 29(1): 13-22. DOI:  10.1016/02779536(89)901238.
    [8] Telichowska A, Kobus-Cisowska J, Szulc P, et al. Phytopharmacological possibilities of bird cherry Prunus padus L. and Prunus serotina L. species and their bioactive phytochemicals[J]. Nutrients, 2020, 12(7): 2-21. DOI:  10.3390/nu12071966.
    [9] Sile I, Videja M, Makrecka-K M, et al. Chemical composition of Prunus padus L. flower extract and its anti-inflammatory activities in primary bone marrow-derived macrophages[J]. Journal of Ethnopharmacology, 2021, 268: 113 678. DOI:  10.1016/j.jep.2020.113678.
    [10] Aleksandra T, Joanna K C, Marta L, K, et al. Polyphenol content and antioxidant activities of Prunus padus L. and Prunus serotina L. leaves: Electrochemical and spectrophotometric approach and their antimicrobial properties[J]. Open Chemistry, 2020, 18(1): 1 125-1 135. DOI:  10.1515/chem-2020-0121.
    [11] Magiera A, Marchelak A, Michel P, et al. Lipophilic extracts from leaves, inflorescences and fruits of Prunus padus L. as potential sources of corosolic ursolic and oleanolic acids with anti-inflammatory activity[J]. Natural Product Research, 2019, 35(13): 2 263-2 268. DOI:  10.1080/14786419.2019.1666385.
    [12] 辛越, 刘荣, 何娇, 等. 稠李属三种果实花色苷对HepG2细胞的增殖抑制作用比较[J]. 食品工业科技, 2013, 34(9): 348-351. DOI:  10.13386/j.issn1002-0306.2013.09.015. Xin Y, Liu R, He J, et al. Effect of anthocyanins extracted from three kinds of Padus Mill fruits on the proliferation of HepG2 cell[J]. Science and Technology of Food Industry, 2013, 34(9): 348-351.
    [13] 罗恒国, 杨士花, 李晴, 等. 云南省特色水果中多酚化合物含量和抗氧化性的比较[J]. 食品与发酵工业, 2017, 43(9): 104-108. DOI:  10.13995/j.cnki.11-1802/ts.014045. Luo H G, Yang S H, Li Q, et al. Comparative study on the phenolic contents and antioxidant activities of typical fruits in Yunnan Province[J]. Food and Fermentation Industries, 2017, 43(9): 104-108.
    [14] 张言, 高定烽, 李思敏, 等. 响应面优化超声辅助提取胭脂果色素工艺研究[J]. 食品研究与开发, 2019, 40(9): 106-111. DOI:  10.3969/j.issn.1005-6521.2019.09.018. Zhang Y, Gao D Y, Li S M, et al. Response surface optimization ultrasonic assisted extraction of carmine fruit pigmentation process[J]. Food Research and Development, 2019, 40(9): 106-111.
    [15] 王宁, 汤丽昌, 姚海萍, 等. 岭南山竹子叶三萜成分研究[J]. 时珍国医国药, 2012, 23(11): 2 700-2 701. DOI:  10.3969/j.issn.1008-0805.2012.11.014. Wang N, Tang L C, Yao H P, et al. Triterpenes from the leaves of Garcinia oblongifolia[J]. Lishizhen Medicine and Materia Medica Research, 2012, 23(11): 2 700-2 701.
    [16] 匡广凯, 罗钉, 张玉波, 等. 地胆草的化学成分研究[J]. 中药材, 2020, 43(3): 591-595. DOI:  10.13863/j.issn1001-4454.2020.03.015. Kuang G K, Luo D, Zhang Y B, et al. Chemical constituents of elephantopus scaber[J]. Journal of Chinese Medicinal Materials, 2020, 43(3): 591-595.
    [17] 孟宁, 黄山, 胡丹丹, 等. 藏荆芥化学成分的研究[J]. 中成药, 2017, 39(5): 976-980. DOI:  10.3969/j.issn.1001-1528.2017.05.019. Meng N, Huang S, Hu D D, et al. Chemical constituents from Nepeta angustifolia[J]. Chinese Traditional Patent Medicine, 2017, 39(5): 976-980.
    [18] 张扩, 赵明, 王美娇, 等. 细叶杜香叶中三萜类化学成分研究[J]. 中草药, 2018, 49(6): 1 250-1 254. DOI:  10.7501/j.issn.0253-2670.2018.06.003. Zhang K, Zhao M, Wang M J, et al. Triterpenoids isolated from leaves of Ledum palustre[J]. Chinese Traditional and Herbal Drugs, 2018, 49(6): 1 250-1 254.
    [19] 蔡云婷, 耿华伟. 桃金娘根的化学成分研究[J]. 中药材, 2016, 39(6): 1 303-1 307. DOI:  10.13863/j.issn1001-4454.2016.06.025. Cai Y T, Geng H W. Chemical constituents from the roots of Rhodomyrtus tomentosa[J]. Journal of Chinese Medicinal Materials, 2016, 39(6): 1 303-1 307.
    [20] 王晓阳, 刘丽萍, 康廷国, 等. 绿玉树的化学成分研究[J]. 中草药, 2011, 42(12): 2 398-2 401. DOI:  10.7501/j.issn.0253-2670. Wang X Y, Liu L P, Kang Y G, et al. Chemical constituents from Euphorbia tirucalli[J]. Chinese Traditional and Herbal Drugs, 2011, 42(12): 2 398-2 401.
    [21] 薛鹏辉, 段静诗, 丁丽琴, 等. 鹅不食草中甾体及酚类化学成分研究[J]. 中国药物化学杂志, 2020, 30(6): 340-346. DOI:  10.14142/j.cnki.cn21-1313/r.2020.06.004. Xue P H, Duan J S, Ding L Q, et al. Steroids and phenols from Centipeda minima[J]. Chinese Journal of Medicinal Chemistry, 2020, 30(6): 340-346.
    [22] 曹桂云, 黄娇, 张启航, 等. 绒毛栗色鼠尾草的化学成分分析[J]. 中国实验方剂学志, 2017, 23(20): 47-50. DOI:  CNKI:SUN:ZSFX.0.2017-20-009. Cao G Y, Huang J, Zhang Q H, et al. Chemical constituents from Salvia castanea[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2017, 23(20): 47-50.
    [23] 秦玲玲, 胡瀚文, 冯丹, 等. 美花筋骨草化学成分研究[J]. 中药材, 2018, 41(9): 2 101-2 104. DOI:  10.13863/j.issn1001-4454.2018.09.017. Qing L L, Hu H W, Feng D, et al. Chemical constituents from Ajuga ovalifoliavar. Calantha[J]. Journal of Chinese Medicinal Materials, 2018, 41(9): 2 101-2 104.
    [24] 张明发, 沈雅琴. 熊果酸和齐墩果酸的肺功能保护和抗肺癌作用的研究进展[J]. 抗感染药学, 2016, 13(5): 961-965. DOI:  CNKI:SUN:KGYY.0.2016-05-005. Zhang M F, Shen Y Q. Research advances on efficacy of anti-lung cancer and lung-protection of ursolic and oleanolic acids[J]. Anti Infect Pharm, 2016, 13(5): 961-965.
    [25] 张明发, 沈雅琴. 熊果酸和齐墩果酸的泌尿系药理作用研究进展[J]. 药物评价研究, 2016, 39(2): 304-312. DOI:  10.7501/j.issn.1674-6376.2016.02.032. Zhang M F, Shen Y Q. Research advances on the pharmacologic actions of ursolic and oleanolic acids inuropoietic system[J]. Drug Evaluation Research, 2016, 39(2): 304-312.
    [26] 沈晓静, 赵红梅, 赵蕾, 等. 齐墩果酸研究进展[J]. 广州化工, 2019, 47(24): 16-19. DOI:  CNKI:SUN:GZHA.0.2019-24-015. Shen X J, Zhao H M, Zhao L, et al. Research progress on oleanolic[J]. Guangzhou Chemical Industry, 2019, 47(24): 16-19.
    [27] 王长福, 孙世芹, 王有志, 等. 朝鲜白头翁抗炎有效部位化学成分研究[J]. 中草药, 2013, 44(18): 2 508-2 514. DOI:  10.7501/j.issn.0253-2670.2013.18.004. Wang C F, Sun S Q, Wang Y Z, et al. Chemical constituents in anti-inflammatory effective fraction from roots of Pulsatilla cernua[J]. Chinese Traditional and Herbal Drugs, 2013, 44(18): 2 508-2 514.
    [28] 冯思敏, 宁可, 邵平, 等. β-谷甾醇和豆甾醇对小鼠急性结肠炎的治疗作用研究[J]. 中国粮油学报, 2018, 33 (12): 80-94. DOI: http://www.cnki.com.cn/Article/CJFDTotalZLYX201812018.htm.

    Feng S M, Ning K, Shao P, et al. Research on the β-sitosterol and stigmasterol therapeutic effect of acute colitis in mice[J]. Journal of the Chinese Cereals and Oils Association, 2018, 33 (12): 80-94.
    [29] Ella J B, Elizabeth A M, Graham C B, et al. Metabolism and functional effects of plant-derived omega-3fatty acids in humans[J]. Progress in Lipid Research, 2016, 64: 30-56. DOI:  10.1016/j.plipres.2016.07.002.
  • [1] 张健李源栋刘秀明高莉张翼鹏党立志 . 仙茅的萜类化学成分研究. 云南大学学报(自然科学版), 2019, 41(2): 367-371. doi: 10.7540/j.ynu.20180502
    [2] 罗艺萍王素娟赵静峰羊晓东李良 . 异型南五味子的化学成分研究. 云南大学学报(自然科学版), 2009, 31(4): 406-409 .
    [3] 李梦佳胡义考李峰许文张定里赵勇 . 破布草化学成分研究. 云南大学学报(自然科学版), 2019, 41(5): 1021-1025. doi: 10.7540/j.ynu.20180807
    [4] 王琼王真 . 大麻药化学成分研究. 云南大学学报(自然科学版), 2011, 33(5): 583-585.
    [5] 杨也许晓娟肖锋汪超万近福杨新洲 . 橙黄瑞香的化学成分研究. 云南大学学报(自然科学版), 2013, 35(S1): 281-285. doi: 10.7540/j.ynu.20130060
    [6] 崔涛彭玲芳夏伟军杨顺丽丁中涛 . 密脉鹅掌柴的化学成分研究(Ⅱ). 云南大学学报(自然科学版), 2011, 33(1): 89-92 .
    [7] 沈瑞芳杨叶昆魏玉玲徐济仓潘聪李雪梅丁中涛周俊 . 滇刺枣的化学成分研究 . 云南大学学报(自然科学版), 2013, 35(S2): 332-. doi: 10.7540/j.ynu.20130647
    [8] 方云山何钰杨明惠蔡乐丁中涛 . 芳香石豆兰的化学成分研究. 云南大学学报(自然科学版), 2016, 38(6): 947-951. doi: 10.7540/j.ynu.20160336
    [9] 隆金桥林华羊晓东赵静峰李良 . 广西山豆根化学成分的研究. 云南大学学报(自然科学版), 2011, 33(1): 72-76 .
    [10] 尹田鹏陈阳舒燕蔡乐丁中涛 . 玉龙乌头的化学成分研究. 云南大学学报(自然科学版), 2018, 40(1): 148-153. doi: 10.7540/j.ynu.20170340
    [11] 施义民李晓霞刘娜李良杨丽娟 . 红皮木姜子的化学成分研究(Ⅱ). 云南大学学报(自然科学版), 2014, 36(4): 564-570. doi: 10.7540/j.ynu.20130749
    [12] 罗蕾张吕丽李祖强曲云峰杨亚丹马国义 . 羊脆木的化学成分研究(Ⅱ). 云南大学学报(自然科学版), 2014, 36(6): 903-906. doi: 10.7540/j.ynu.20140330
    [13] 杨明惠赵会然郭洁晏和贵伏雪梅蔡乐 . 短瓣兰的化学成分研究. 云南大学学报(自然科学版), 2015, 37(4): 556-563. doi: 10.7540/j.ynu.20150134
    [14] 王玉波黄荣林峰赵静峰李良 . 红芽大戟的化学成分研究. 云南大学学报(自然科学版), 2004, 26(3): 254-255.
    [15] 杨雪琼黄荣保志娟丁中涛 . 二蕊荷莲豆的化学成分. 云南大学学报(自然科学版), 2003, 25(4): 358-360.
    [16] 陈颢李丽娟万伟超张继光涂学飞李良 . 旱冬瓜化学成分的研究. 云南大学学报(自然科学版), 2013, 35(4): 542-548. doi: 10.7540/j.ynu.20120535
    [17] 夏伟军彭玲芳杨立国谢佳颖张海元梅双喜 . 密脉鹅掌柴的化学成分研究(Ⅲ). 云南大学学报(自然科学版), 2015, 37(5): 746-749. doi: 10.7540/j.ynu.20150208
    [18] 胡军赵会然顾玲丽赵春婷陆安梅伏雪梅秦泽敏杨明惠 . 岩笋的化学成分研究. 云南大学学报(自然科学版), 2017, 39(6): 1059-1064. doi: 10.7540/j.ynu.20170037
    [19] 李来伟杨姝羊晓东赵静峰李良 . 剑叶木姜子的化学成分研究. 云南大学学报(自然科学版), 2008, 30(2): 187-190.
    [20] 杨薇唐长明李显周娅王丽李良 . 毛杨梅化学成分的研究. 云南大学学报(自然科学版), 2011, 33(4): 453-457 .
  • 加载中
图(1)表(1)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  243
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-24
  • 录用日期:  2021-03-27
  • 网络出版日期:  2021-07-10
  • 刊出日期:  2021-09-15

粗梗稠李的化学成分研究

    作者简介:李 瑞(1996−),女,云南人,硕士生,主要研究天然药物化学. E-mail:825393684@qq.com
    通讯作者: 蒋孟圆, jmy0778@163.com
  • 云南民族大学 民族药资源化学国家民族事务委员会−教育部重点实验室,云南 昆明 650500

摘要: 运用多种色谱分离方法对粗梗稠李95%乙醇提取物进行化学成分研究,分离鉴定了10个化合物,分别为5(6)-gluten-3α-ol( 1 )、乌苏酸( 2 )、齐墩果酸( 3 )、羽扇豆醇( 4 )、无羁萜( 5 )、羽扇烯酮( 6 )、β-谷甾醇( 7 )、豆甾醇( 8 )、亚麻酸乙酯( 9 )和亚麻酸( 10 ).

English Abstract

  • 粗梗稠李(Padus napaulensis)属蔷薇科稠李属植物,别名鬼眼睛果、山李子. 稠李属植物共有21种,中国有14种[1-2],主要分布于云南、贵州、陕西等地[3]. 稠李属植物果实、花、叶、树皮均可入药[4-6],传统上被用于止咳、清热、止泻、抗风湿及利尿[7]. 研究报道蔷薇科李属、臭樱属、扁核木属植物中富含维生素类、黄酮类、三萜类、植物甾醇、有机酸、花青素类、酚酸等成分[8-11],但稠李属研究较少. 辛越等[12]报道紫叶稠李、山桃稠李、稠李果实花色苷色素具有抗肿瘤和抗氧化活性报道[12]. 罗恒国[13]证实粗梗稠李多酚成分具有一定抗氧化作用. 杨新周等[1-2,14]对粗梗稠李花色苷色素提取工艺进行优化. 目前,粗梗稠李的化学成分未见报道. 本文旨在对粗梗稠李乙醇提取物乙酸乙酯萃取部分进行单体化合物的分离,这也是首次对粗梗稠李化学成分的报道.

    • BRUKER AVⅢ-40核磁共振仪(德国BRUKER公司);OSB-2100型旋转蒸发仪(日本EYELA公司);Sephadex LH-20葡聚糖凝胶(美国GE公司);硅胶(青岛海洋化工有限公司);反相C-18(40~63 μm)硅胶(德国Merck公司);试剂均为色谱纯或分析纯,购自天津风船有限公司.

      样品粗梗稠李果实于2018年11月采自云南省临沧市凤庆县,经云南民族大学杨青松教授鉴定为蔷薇科稠李属植物粗梗稠李(Padus napaulensis). 样品现保存于云南民族大学民族药资源化学重点实验室,标本号为YMU-J-20181102.

    • 去核粗梗稠李果实3.4 kg,粉碎并用95%的乙醇作为溶剂进行超声提取(20 L/次),每次超声提取45 min,反复提取3次,合并提取液,减压浓缩后加入适量水,待浸膏溶解后用乙酸乙酯萃取,减压蒸馏得深紫红色浸膏51.7 g,浸膏采用硅胶柱层析以氯仿−甲醇(体积比50∶1→0∶1,下同)梯度洗脱,采用TLC对收集得到的浓缩液进行检测,分为4个组分,记为Fr.A~D.

      Fr.A (4.3 g)以氯仿−甲醇(3∶7)为溶剂,采用Sephadex LH-20凝胶及反相RP-C18对Fr.A-1-2反复细分纯化得化合物9 (9.2 mg);Fr.A-1-4同上得化合物10 (6.1 mg). Fr.A-3以石油醚−乙酸乙酯(30∶1→2∶1)为溶剂得到化合物7 (27.3 mg). Fr.B (5.5 g)以石油醚−乙酸乙酯(60∶1→1∶1)硅胶柱洗脱,收集并浓缩各极性段洗脱下的样品经TLC分析后共分为4个组分,记为Fr.B-1~4. Fr.B-2以石油醚−乙酸乙酯(30∶1→1∶1)硅胶柱洗脱得化合物8 (31.3 mg). Fr.B-2-3采用氯仿−甲醇3∶7)为溶剂反复经Sephadex LH-20及反向RP-C18纯化得化合物3 (8.3 mg),4 (8.3 mg),6 (7.6 mg). Fr.B-2-4与Fr.B-2-3分离方法一致,得到化合物5 (7.2 mg). Fr.C (4.2 g)以石油醚−乙酸乙酯(20∶1→1∶1)硅胶柱洗脱,收集并浓缩各极性段洗脱下的样品经TLC分析后共分为2个组分,记为Fr.C-1~2. Fr.C-1经反向RP-C18分离得到化合物1 (10.1 mg). Fr.D (18.0 g)以石油醚−乙酸乙酯(60∶1→0∶1)硅胶柱,以及反复经氯仿−甲醇(3∶7)为洗脱剂,洗脱后采用Sephadex LH-20凝胶纯化得化合物2 (18.9 mg).

    • 化合物110结构见图1.

      图  1  粗梗稠李化合物110结构

      Figure 1.  The structures of compounds 110 from Padus napaulensis

      化合物1~10的13C NMR数据均见表1. 其外观形态、1H NMR及鉴定结果分别如下.

      碳位1a2b3a4a5a6a7a8a9a10c
      118.338.438.638.322.239.737.437.414.2177.7
      227.922.927.327.441.334.331.832.160.2135.1
      376.576.879.277.4214.9218.472.072.0173.826.1
      441.038.539.439.358.147.542.442.534.428.2
      5141.752.455.454.942.255.0140.9140.925.030.2
      6122.217.118.518.241.119.8121.9121.929.130.3
      723.836.332.834.218.133.732.032.129.130.7
      847.538.238.940.852.940.932.132.129.130.2
      935.047.047.850.237.349.950.350.329.6131.1
      1049.838.437.336.959.237.036.736.727.2128.9
      1133.223.323.621.035.221.621.221.4130.226.5
      1230.5124.6122.825.230.325.339.939.9127.1129.2
      1338.0138.2143.838.239.138.342.542.425.6129.2
      1439.441.741.842.938.143.056.956.9128.226.4
      1534.732.727.826.631.827.624.524.5128.2128.2
      1635.221.123.735.635.835.628.429.325.532.7
      1730.246.846.743.029.843.156.256.2127.721.5
      1843.254.841.248.342.848.412.012.0131.914.6
      1936.130.246.048.035.548.119.519.520.4
      2028.428.330.8150.927.9151.020.042.414.2
      2132.227.634.029.832.630.018.921.2
      2239.136.532.640.039.540.134.1138.5
      2329.128.328.328.26.426.826.3129.4
      2425.616.915.715.814.321.246.051.4
      2516.416.115.516.017.716.129.331.8
      2618.615.317.316.020.015.936.321.2
      2719.827.026.114.618.414.619.219.2
      2832.5178.3183.318.032.218.123.225.6
      2929.218.033.2109.434.7109.512.112.1
      3034.723.823.119.731.519.4
      溶剂:a. CDCl3;b. DMSO-d6;c. CD3OD.

      表 1  化合物110 13C NMR数据(100 MHz)

      Table 1.  13C NMR data of compounds 1−10

      化合物1. 白色结晶. 1H NMR (400 MHz,CDCl3) δ:5.93 (1H,d,J = 6.2 Hz,H-6),3.50 (1H,brs,H-3),1.22~2.03为三萜骨架特征氢,1.18 (3H,s,H-28),1.15 (3H,s,H-23),1.11 (3H,s,H-26),1.09 (3H,s,H-24),1.02 (3H,s,H-27),1.00 (3H,s,H-30),0.95 (3H,s,H-29),0.86 (3H,s,H-25). 上述数据与文献[15]报道一致,故鉴定化合物1为5(6)-gluten-3α-ol.

      化合物2. 白色粉末. 1H NMR (400 MHz,DMSO) δ:12.17 (1H,s,28-COOH),5.15 (1H,s,H-12),4.31 (1H,brs,3-OH),3.19 (1H,dd,J = 11.0,5.2 Hz,H-3),2.60 (1H,s,H-18),1.15 (3H,d,J = 3.1 Hz,H-30),1.02 (3H,d,J = 4.7 Hz,H-29). 上述数据与文献[16]报道一致,故鉴定化合物2为乌苏酸.

      化合物3. 白色粉末. 1H NMR (400 MHz,CDCl3) δ:5.27 (1H,brs,J = 3.3 Hz,H-12),3.20 (1H,dd,J = 11.2,4.4 Hz,H-3),2.81 (1H,dd,J = 9.6,4.0 Hz,H-18),1.13 (3H,s,H-27),0.99 (3H,s,H-25),0.93 (3H,s,H-30b),0.91 (3H,s,H-29),0.90 (3H,s,H-30a),0.77 (3H,s,H-23),0.75 (3H,s,H-26). 上述数据与文献[17]报道一致,故鉴定化合物3为齐墩果酸.

      化合物4. 白色粉末. 1H NMR (400 MHz,CDCl3) δ:4.37 (1H,d,J = 2.2 Hz,H-29a),4.25 (1H,d,J = 2.3 Hz,H-29b),3.20 (1H,dd,J = 11.1,4.7 Hz,H-3),1.51 (3H,s,H-30),1.05 (3H,s,H-26),0.72 (3H,s,H-23),0.70 (3H,s,H-27),0.84 (3H,s,H-25),0.76 (3H,s,H-28),0.73 (3H,s,H-24). 上述数据与文献[18]报道一致,故鉴定化合物4为羽扇豆醇.

      化合物5. 无色针状结晶. 1H NMR (400 MHz,CDCl3) δ:2.36 (2H,m,H-2),2.22 (1H,m,H-4),1.94 (1H,m,H-1a),1.74 (1H,m,H-6b),1.67 (1H,m,H-1b),1.16 (3H,s,H-28),1.02 (3H,s,H-27),0.98 (6H,s,H-26,H-30),0.93 (3H,s,H-29),0.84 (3H,s,H-25),0.78 (3H,s,H-24). 上述数据与文献[19]报道一致,故鉴定化合物5为无羁萜.

      化合物6. 无色晶体. 1H NMR (400 MHz,CDCl3) δ:4.63 (1H,brs,H-29b),4.58 (1H,brs,H-29a),1.68 (3H,s,H-30),1.08 (6H,s,H-23,H-26),1.04 (3H,s,H-24),0.96 (3H,s,H-27),0.94 (3H,s,H-25),0.80 (3H,s,H-28). 上述数据与文献[20]报道一致,故鉴定化合物6为羽扇烯酮.

      化合物7. 白色粉末. 1H NMR (400 MHz,CDCl3) δ:5.35 (1H,d,J = 5.3 Hz,H-6),3.51 (1H,m,H-3),1.03 (3H,s,H-19),0.96 (3H,d,J = 8.1 Hz,H-21),0.88 (3H,t,J = 7.8 Hz,H-29),0.83 (3H,d,J = 8.7 Hz,H-27),0.81 (3H,d,J = 8.7 Hz,H-26),0.67 (3H,s,H-18). 上述数据与文献[19]报道一致,故鉴定化合物7β-谷甾醇.

      化合物8. 白色结晶. 1H NMR (400 MHz,CDCl3) δ:5.36~5.38 (1H,m,H-6),5.29 (1H,dd,J = 15.3,8.9 Hz,H-23),5.04 (1H,dd,J = 15.5,8.9 Hz,H-22),3.53~3.59 (1H,m,H-3),1.22 (3H,d,J = 6.7 Hz,H-21),1.20 (3H,s,H-19),1.03 (3H,d,J = 6.4 Hz,H-26),0.99 (3H,t,J = 7.5 Hz,H-29),0.90 (3H,d,J = 6.5 Hz,H-27),0.70 (3H,s,H-18). 上述数据与文献[21]报道一致,故鉴定化合物8为豆甾醇.

      化合物9:无色油状液体. 1H NMR (400 MHz,CDCl3) δ:5.29~5.43 (6H,m,H-11,H-12,H-14,H-15,H-17,H-18),4.12 (2H,q,J = 7.2 Hz,H2-2),2.81 (6H,m,H2-13,H2-16,H2-19),2.29 (2H,t,J = 7.8 Hz,H2-4),2.08 (2H,m,H2-10),1.62 (2H,m,H2-5),1.23~1.36 (8H,m,H2-6,H2-9),1.25 (3H,t,J = 7.2 Hz,H3-1),0.98 (3H,t,J = 7.8 Hz,H3-20). 上述数据与文献[22]报道一致,故鉴定化合物9为亚麻酸乙酯.

      化合物10:浅黄色的油状液体. 1H NMR (400 MHz,CD3OD) δ:5.32 (6H,m,H-9,H-10,H-12,H-13,H-15,H-16),2.81 (4H,t,J = 5.8 Hz,H-11,H-14),2.27 (2H,t,J = 7.4 Hz,H-2),2.08 (4H,dd,J = 13.9,7.0 Hz,H-8,H-17),1.57 (2H,m,H-3),1.34 (8H,m,H-4,H-7),0.98 (3H,t,J = 7.5 Hz,H-18). 上述数据与文献[23]报道一致,故鉴定化合物10为亚麻酸.

    • 本文首次从粗梗稠李中分离到10个化合物,都为已知化合物. 其中16为五环三萜类化合物,三萜类化合物广泛分布在蔷薇科植物中,在整个植被季中,每年9 —11月初三萜含量最高,为收获优质植物原材料的最佳时间[11],化合物23有抗炎抗氧化、抗糖尿病、抗动脉粥样硬化、抗肥胖、抗焦虑、抗骨质疏松、调血脂、镇痛、免疫调控及保护心肝肾肺脏的作用[24-26];化合物4有抗炎、降糖的活性[27]. 78为甾体类化合物,自然界中天然植物甾醇共有250余种,其中化合物78含量最为丰富,有抗炎、降胆固醇功效[28]910为有机酸类化合物,可有效预防心血管疾病、在机体有内免疫调节、抑制衰老、抗癌、抗氧化等作用[29]. 这也是首次对粗梗稠李的化学成分做出报道.

参考文献 (29)

目录

    /

    返回文章
    返回