Abstract:
Let
T = \left( \beginarray*20c A_1&0&0 \\ U_21&A_2&0 \\ U_31&U_32&A_3 \endarray \right) 
be triangular matrix ring of order 3, where
A_i 
are rings
(i = 1,2,3) 
and
U_ij 
are
(A_i,A_j) 
-bimodule
(1 \leqslant j < i \leqslant 3) 
. We obtain equivalent condition that module over ring
T 
is Gorenstein projective module. Suppose
M = \left( \beginarray*20c M_1 \\ M_2 \\ M_3 \endarray \right)_\varphi ^M 
is left
T 
-module. If
U_ij(1 \leqslant j < i \leqslant 3) 
as left
A_i 
-module, they have finite projective dimensions,
U_32 
as right
A_2 
-module, it is flat, and
U_i1(i = 2,3) 
as right
A_1 
-module, they have finite flat dimensions, then
M 
is Gorenstein projective left
T 
-module if and only if
M_1 
is Gorenstein projective left
T 
-module, and each
i = 1,2,
\varphi _i^M:U_i + 1,i \otimes _A_iM_i \to M_i + 1 
is monomorphism, and
\rmcoker \;\varphi _i^M
is Gorenstein projective left
A_i + 1 
-module. At the same time, we also characterize Gorenstein projective dimensions of left
T 
-module
M.