Abstract:
                                      Let 
 T = \left( \beginarray*20c  A_1&0&0 \\   U_21&A_2&0 \\   U_31&U_32&A_3 \endarray \right) 
 be triangular matrix ring of order 3, where 
 A_i 
 are rings 
 (i = 1,2,3) 
 and 
 U_ij 
 are 
 (A_i,A_j) 
-bimodule
 (1 \leqslant j  <  i \leqslant 3) 
. We obtain equivalent condition that module over ring 
 T 
 is Gorenstein projective module. Suppose 
 M = \left( \beginarray*20c  M_1 \\   M_2 \\   M_3 \endarray \right)_\varphi ^M 
is left 
 T 
-module. If 
 U_ij(1 \leqslant j  <  i \leqslant 3) 
 as left 
 A_i 
-module, they have finite projective dimensions, 
 U_32 
 as right 
 A_2 
-module, it is flat, and
 U_i1(i = 2,3) 
 as right 
 A_1 
-module, they have finite flat dimensions, then 
 M 
 is Gorenstein projective left 
 T 
-module if and only if 
 M_1 
 is Gorenstein projective left 
 T 
-module, and each
 i = 1,2, 
   \varphi _i^M:U_i + 1,i \otimes _A_iM_i \to M_i + 1 
 is monomorphism, and 
\rmcoker \;\varphi _i^M
 is Gorenstein projective left 
 A_i + 1 
-module. At the same time, we also characterize Gorenstein projective dimensions of left 
 T 
-module 
M.