张秀华, 杨冬梅, 沈圳, 赵陈浩, 张保平. 模板辅助合成多孔Ni0.85Se/C复合微球及其储锂/钠性能[J]. 云南大学学报(自然科学版), 2022, 44(6): 1206-1217. doi: 10.7540/j.ynu.20210239
引用本文: 张秀华, 杨冬梅, 沈圳, 赵陈浩, 张保平. 模板辅助合成多孔Ni0.85Se/C复合微球及其储锂/钠性能[J]. 云南大学学报(自然科学版), 2022, 44(6): 1206-1217. doi: 10.7540/j.ynu.20210239
ZHANG Xiu-hua, YANG Dong-mei, SHEN Zhen, ZHAO Chen-hao, ZHANG Bao-ping. A research on template directed synthesis of porous Ni0.85Se/C microsphere as lithium/sodium ion battery anodes[J]. Journal of Yunnan University: Natural Sciences Edition, 2022, 44(6): 1206-1217. DOI: 10.7540/j.ynu.20210239
Citation: ZHANG Xiu-hua, YANG Dong-mei, SHEN Zhen, ZHAO Chen-hao, ZHANG Bao-ping. A research on template directed synthesis of porous Ni0.85Se/C microsphere as lithium/sodium ion battery anodes[J]. Journal of Yunnan University: Natural Sciences Edition, 2022, 44(6): 1206-1217. DOI: 10.7540/j.ynu.20210239

模板辅助合成多孔Ni0.85Se/C复合微球及其储锂/钠性能

A research on template directed synthesis of porous Ni0.85Se/C microsphere as lithium/sodium ion battery anodes

  • 摘要: 以多孔Ni/C复合材料作为牺牲模板,通过水热硒化法制备了多孔Ni0.85Se/C复合微球. XRD、SEM和TEM表征结果显示,具有良好结晶性和相纯度的Ni0.85Se/C是由Ni0.85Se纳米颗粒密堆积而成的多孔球形结构;XPS和TG曲线显示共存的碳质量分数由Ni/C中的27.3%下降为Ni0.85Se/C的7.1%. 作为锂离子电池负极材料,在0.2 A·g−1的电流密度下,Ni0.85Se/C第2次可逆放电比容量为579.2 mA·h·g−1,由于非法拉第容量贡献,经过100次循环后,放电比容量变为812.8 mA·h·g−1,远优于未硒化的Ni/C复合材料. 作为钠离子电池负极材料,Ni0.85Se/C具有较高的放电比容量,50次循环后,放电比容量剩余值为293.5 mA·h·g−1. CV和EIS分析证明Ni0.85Se/C的放电容量是法拉第和非法拉第过程协同贡献的结果,且传质电阻在起始循环中由于活化显著降低,随后会逐渐增加.

     

    Abstract: Porous Ni0.85Se/C composite microspheres were prepared by hydrothermal selenization using porous Ni/C composites as sacrificial templates. XRD, SEM and TEM results indicated that Ni0.85Se/C performs good crystallinity and phase purity, and it is a porous spherical structure formed by dense accumulation of Ni0.85Se/C nanoparticles. XPS and TG curves showed that the coexisting carbon content decreased from 27.3% in Ni/C to 7.1% in Ni0.85Se/C. The first reversible discharge capacity of Ni0.85Se/C was 579.2 mA·h·g−1 at the current density of 0.2 A·g−1, and the discharge capacity becomes 812.8 mA·h·g−1 after 100 cycles due to the contribution of non-Faraday capacity, which was far superior to the unselenized Ni/C composites when used as an anode material for liithium ion batteries. Ni0.85Se/C had a high discharge specific capacity as an anode material for sodium ion batteries. After 50 cycles, the residual discharge specific capacity was 293.5 mA·h·g−1. CV and EIS analysis showed that the discharge capacity of Ni0.85Se/C was originated from the co-contribution of Faraday and non-Faraday processes, and the mass transfer resistance decreased significantly during the initial cycle due to activation, and then increased gradually.

     

/

返回文章
返回