曹毓蓉, 马永鹏, 张秀姣, 刘雄芳, 刘德团, 张垚, 李正红, 马宏. 基于SNP分子标记的波叶杜鹃遗传特征分析[J]. 云南大学学报(自然科学版), 2022, 44(4): 859-869. doi: 10.7540/j.ynu.20210261
引用本文: 曹毓蓉, 马永鹏, 张秀姣, 刘雄芳, 刘德团, 张垚, 李正红, 马宏. 基于SNP分子标记的波叶杜鹃遗传特征分析[J]. 云南大学学报(自然科学版), 2022, 44(4): 859-869. doi: 10.7540/j.ynu.20210261
CAO Yu-rong, MA Yong-peng, ZHANG Xiu-jiao, LIU Xiong-fang, LIU De-tuan, ZHANG Yao, LI Zheng-hong, MA Hong. Genetic characteristics of Rhododendron hemsleyanum based on SNP molecular markers[J]. Journal of Yunnan University: Natural Sciences Edition, 2022, 44(4): 859-869. DOI: 10.7540/j.ynu.20210261
Citation: CAO Yu-rong, MA Yong-peng, ZHANG Xiu-jiao, LIU Xiong-fang, LIU De-tuan, ZHANG Yao, LI Zheng-hong, MA Hong. Genetic characteristics of Rhododendron hemsleyanum based on SNP molecular markers[J]. Journal of Yunnan University: Natural Sciences Edition, 2022, 44(4): 859-869. DOI: 10.7540/j.ynu.20210261

基于SNP分子标记的波叶杜鹃遗传特征分析

Genetic characteristics of Rhododendron hemsleyanum based on SNP molecular markers

  • 摘要: 利用ddRAD-seq测序技术研究波叶杜鹃居群的遗传多样性与遗传结构,探讨种群演化历史,为其种质资源的保护利用和回归引种提供科学依据. 研究结果表明,波叶杜鹃在居群水平上具有丰富的遗传多样性(He=0.2267±0.002;π=0.2410±0.0032),居群间的遗传分化处于中等水平(FST=0.0626). AMOVA分析表明,总遗传变异中有98.42%的变异来自居群内,居群间的变异仅占1.58%. 观测杂合度和期望杂合度分别为0.1636±0.002和0.2267±0.002,居群内近交系数(FIS)为0.2220±0.0222,所有居群均表现出杂合子缺失. 聚类分析表明,6个居群可归类为2个类群,大多数个体(98.8%)谱系清晰. 在近期的进化过程中,波叶杜鹃的有效种群大小(Ne)在持续下降,直到约1000年前. 波叶杜鹃在物种和居群水平上,具有丰富的遗传多样性,进一步选择和育种利用的潜力较好. 遗传分化水平中等,遗传变异主要来源于居群内. 由于近期冰期气候环境的变化,再加上人为活动(发展旅游、基础设施建设等)导致波叶杜鹃的生存环境逐步恶化,使得该物种面临极高的灭绝风险. 从对该濒危植物保护的角度考虑,应尽快建立自然保护小区予以有效保护. 同时加强人工繁育技术研究,在扩大种群规模的同时维持其遗传多样性,这对波叶杜鹃的种群恢复和开发利用都有重要的意义.

     

    Abstract: The genetic diversity and genetic structure of Rhododendron hemsleyanum were analyzed, and the evolutionary history of the population was discussed, so as to provide scientific basis for the protection and utilization of its germplasm resources and the reintroduction. The genetic diversity was high at the population level (He=0.2267±0.002; π=0.2410±0.0032).The genetic differentiation among populations was moderate (FST=0.0626). AMOVA analysis showed that 98.42% of the total genetic variation existed within populations, and only 1.58% existed among populations. The observed heterozygosity and expected heterozygosity were 0.1636±0.0020 and 0.2267±0.0020, respectively, and the inbreeding coefficient (FIS) was 0.2220±0.0222. All populations showed heterozygosity loss. Cluster analysis revealed that the six populations could be classified into two groups, and most individuals (98.8%) had clear pedigree. During the recent evolutionary period, the effective population size (Ne) continued to decline until about 1000 years. R. hemsleyanum was rich in genetic diversity in both species and population aspects, and had potential for further selection and breeding utilization. The level of genetic differentiation was medium, and the genetic variation mainly existed within the population. Due to the changes of climate and environment during the last glacial period, coupled with human activities (tourism development, infrastructure construction, etc.), the living environment gradually deteriorated, making the species face a high risk of extinction. From the perspective of conservation of this critically endangered plant, it is necessary to establish a natural conservation area for effective protection as soon as possible, and at the same time to strengthen the study of artificial breeding technology, so as to expand the population size and maintain its genetic diversity, which is of great significance to the population recovery, development and utilization of R. hemsleyanum.

     

/

返回文章
返回