非齐度量测度空间上的Herz-Morrey-Hardy空间及其应用

Herz-Morrey-Hardy space on non-homogeneous metric measure space and its applications

  • 摘要: 在一个既满足上双倍条件又满足几何双倍条件的非齐度量测度空间上,引进了一类Herz-Morrey-Hardy空间,讨论了它的分解. 作为应用,利用非齐度量测度空间的性质,借助于非齐度量测度空间上Calderón-Zygmund算子的L^q有界性,在非齐度量测度空间上证明了Calderón-Zygmund算子是从Herz-Morrey-Hardy空间到Morrey-Herz空间有界的.

     

    Abstract: For a non-homogeneous metric measure space satisfying the upper doubling and the geometrically doubling conditions, the Herz-Morrey-Hardy spaces on the non-homogeneous metric measure spaces are introduced. The decomposition of the Herz-Morrey-Hardy spaces is discussed. Then, as an application, by the properties of the non-homogeneous metric measure spaces, based on the theory of boundedness for Calderón-Zygmund operators on L^q spaces, the boundedness of the Calderón-Zygmund operators from the Herz-Morrey-Hardy spaces into the Morrey-Herz spaces with non-homogeneous metric measure is obtained.

     

/

返回文章
返回