赵磊, 赵鸿宇, 王新琴, 郭中华, 张正荣. 化学气相沉积法制备单层MoS2及其低温电学输运特性研究[J]. 云南大学学报(自然科学版), 2022, 44(5): 1005-1011. doi: 10.7540/j.ynu.20210545
引用本文: 赵磊, 赵鸿宇, 王新琴, 郭中华, 张正荣. 化学气相沉积法制备单层MoS2及其低温电学输运特性研究[J]. 云南大学学报(自然科学版), 2022, 44(5): 1005-1011. doi: 10.7540/j.ynu.20210545
ZHAO Lei, ZHAO Hong-yu, WANG Xin-qin, GUO Zhong-hua, ZHANG Zheng-rong. A research on CVD growth of monolayer MoS2 and low-temperature electrical transport characteristics[J]. Journal of Yunnan University: Natural Sciences Edition, 2022, 44(5): 1005-1011. DOI: 10.7540/j.ynu.20210545
Citation: ZHAO Lei, ZHAO Hong-yu, WANG Xin-qin, GUO Zhong-hua, ZHANG Zheng-rong. A research on CVD growth of monolayer MoS2 and low-temperature electrical transport characteristics[J]. Journal of Yunnan University: Natural Sciences Edition, 2022, 44(5): 1005-1011. DOI: 10.7540/j.ynu.20210545

化学气相沉积法制备单层MoS2及其低温电学输运特性研究

A research on CVD growth of monolayer MoS2 and low-temperature electrical transport characteristics

  • 摘要: 首先利用化学气相沉积法,在300 nm SiO2/Si基底上生长MoS2材料,通过光学显微镜、扫描电镜、原子力显微镜、拉曼光谱及光致发光光谱等对材料进行表征,实验数据表明成功制备了高质量的单层MoS2材料. 其次,制备了基于单层MoS2的场效应晶体管,结果表明器件的开关比约为1.0×107. 最后测试了器件不同温度下的电学输运特性. 结果表明器件在低温(T<100 K)时,其导电机制可以用变程跃迁模型解释,当在高温(T>100 K)时,器件的电学输运特性由近邻跃迁模型确定. 这项工作有助于深入理解单层MoS2的电学输运特性及其在各种光电器件的应用.

     

    Abstract: In this research, chemical vapor deposition (CVD) method was used to cultivate MoS2 material on a silicon substrate with a 300 nm oxide layer. Monolayer MoS2 materials were characterized by optical microscope (OM), scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectroscopy and photoluminescence (PL) spectroscopy. It shows that the single-layer MoS2 flakes with high-quality has been successfully fabricate. Then, single-layer MoS2 field-effect transistor (FET) was prepared. Experimental results of device tests showed that the on-off ratio of the device was about 1.0×107. Finally, the electrical transport characteristics of the devices at different temperatures were tested. The results show that the electrical conduction mechanism at low temperature (T<100 K) can be explained by Mott’s variable-range hopping (VRH) model. When the temperature is higher than 100 K, electrical transport properties could be determined by his nearest neighbor hopping (NNH) model. This work will be helpful to an in-depth understanding of the electrical transport characteristics of single-layer MoS2 and the design and performance improvement of the optoelectronic devices.

     

/

返回文章
返回