Abstract:
We proved the fractional incompressible Navier-Stokes equations for the initial data by the Fourier analysis and standard techniques in the Sobolev-Gevrey space
\dotH_a,\sigma ^s (\bfR^3)
\left(a > 0, \sigma > 1, \dfrac52 - 2\alpha < s < \dfrac32, 1 \leqslant \alpha \leqslant \dfrac54\right)
. We show the unique existence of solution
u \in C(0,T^ * );\dot H_a,\sigma ^s(\bfR^3))
for the initial data
u_0 \in \dot H_a,\sigma ^s(\bfR^3)
and the exponential type blow-up criteria considering these same spaces with
T^ * < \infty 
.