有向哈密顿回路问题的一个充分条件及其多项式验证算法

A sufficient condition for directed hamilton cycle problem and its polynomial verification algorithm

  • 摘要: 利用自动机理论研究有向哈密顿回路问题,提出一个多项式复杂度的算法验证有向哈密顿回路问题的一个充分条件. 更具体地说,将有向图建模为一个自动机,并在自动机的基础上形式化了哈密顿图的相关概念,然后提出了一个多项式复杂度的算法,检验一个自动机标记的语言的子集是否满足真子集的一个充分条件. 在该算法的基础上,提出了一个多项式复杂度的算法检验哈密顿图的一个充分条件并找出相应的哈密顿回路. 特别地,给出了一个判断有向图是否是哈密顿图的充分条件和一个判断有向图中的一条回路是否是哈密顿回路的充分条件.

     

    Abstract: The directed Hamilton cycle problem is investigated based on automata theory and a polynomial algorithm is proposed to test the sufficient condition of this problem. More specifically, the digraph is modeled as an automaton, and the concept of Hamiltonian graph is formalized based on automaton. Then a polynomial algorithm is proposed to check whether a subset of a language marked by an automaton satisfies a sufficient condition of true subset. Based on this algorithm, a polynomial algorithm is proposed to test whether a digraph satisfies a sufficient condition of Hamiltonian graph and find the corresponding Hamilton cycles. In particular, a sufficient condition for checking whether a digraph is a Hamiltonian digraph and a sufficient condition for checking whether a cycle in a digraph is a Hamilton cycle are given.

     

/

返回文章
返回