不含3-圈的平面图的弱邻点可区别边染色
Weak adjacent vertex distinguishing edge coloring of planar graphs without 3-cycles
-
摘要: 弱邻点可区别边染色是指图G有一个正常边染色且任意2个相邻的最大度顶点的颜色集合不相等. 使图G有一个弱邻点可区别边染色的最小颜色数值,被称为弱邻点可区别边色数,记作
\chi _a\Delta ^'(G) . 证明了:若图G是不含3 -圈的平面图,则有\chi _a\Delta ^'(G)\le \mathrmmax\9,\Delta(G)+1\ .Abstract: The weak adjacent vertex distinguishing edge coloring of graph G is a proper edge coloring of G such that any pair of adjacent maximum degree vertices have distinct sets of colors. The minimum number of colors required for a weak adjacent vertex distinguishing edge coloring of Gis denoted by\chi _a\Delta ^'(G) . In this paper, we prove that if G is a planar graph without 3-cycles, then\chi _a\Delta ^'(G)\le \mathrmmax\9,\Delta (G)+1\ .