分数阶Hamiltonian系统的可解性

Solvability of fractional Hamiltonian systems

  • 摘要: 研究一类分数阶Hamiltonian系统解的存在性. 考虑含有参数的势函数 W(t,u) 满足新的超线性和次线性组合条件 W(t,u) = W_1(t,u) + \mu W_2(t,u) \mu > 0. \left| u \right| \to \infty 时, W_1(t,u) 满足更一般的超线性增长条件,代替Ambrosetti-Rabinowitz条件; W_2(t,u) 满足更一般的次线性增长条件. 这部分需要建立新的紧嵌入定理,用于验证序列的紧性. 利用临界点理论,得到上述系统2个解存在结果.

     

    Abstract: We study the existence of solutions for fractional Hamiltonian systems. We consider the potential function W(t,u) with parameters to satisfy the new superlinear and sublinear combination conditions W(t,u) = W_1(t,u) + \mu W_2(t,u), \mu > 0. When \left| u \right| \to \infty , W_1(t,u) satisfies the more general superlinear growth conditions, instead of the Ambrosetti-Rabinowitz condition; W_2(t,u) satisfies more general sublinear growth conditions. In this part, we need to establish a new compact embedding theorem to verify the compactness of the sequence. Using the critical point theory, the existence results of two solutions of the above system are obtained.

     

/

返回文章
返回