n阶形式下三角矩阵环上的m-Gorenstein投射模

m-Gorenstein projective modules over formal lower triangular matrix ring of order n

  • 摘要: 研究了 n 阶形式下三角矩阵环 T 上的 m -Gorenstein投射模,证明了:设 U_ij(1\leq j < i\leq n) \left(A_i,A_j\right) -双模,并且作为左 A_i -模 U_ij 是投射模,作为右 A_j -模 U_ij 平坦维数有限. 若 M m -Gorenstein投射左 T -模,则 M_1 \left(m-1\right) -Gorenstein投射左 A_1 -模,并且对任意整数 1\leq i\leq n-1,\varphi _i+1,i^M 是单同态,Coker \varphi _i+1,i^M \left(m-1\right) -Gorenstein投射左 A_i+1 -模;反之,若 M_1 m -Gorenstein投射左 A_1 -模, \varphi _i+1,i^M 是单同态,Coker \varphi _i+1,i^M m -Gorenstein投射左 A_i+1 -模,则 M m -Gorenstein投射左 T -模.

     

    Abstract: m -Gorenstein projective modules are investigated over formal lower triangular matrix ring T of order n . Let U_ij(1\leq j < i\leq n) be a \left(A_i,A_j\right) -bimodule, U_A_j has a finite flat dimension and A_iU is projective. It is proved that if M is a m -Gorenstein projective left T -module, then M_1 is a \left(m-1\right) -Gorenstein projective left A_1 -module, \varphi _i+1,i^M is a monomorphism for any 1\leq i\leq n-1 , and \textCoker\varphi _i+1,i^M is a \left(m-1\right) -Gorenstein projective left A_i+1 -module; Conversely, if M_1 is a m -Gorenstein projective left A_1 - module, \varphi _i+1,i^M is a monomorphism, and Coker \varphi _i+1,i^M is a m -Gorenstein projective left A_i+1 -module, then M is a m -Gorenstein projective left T -module.

     

/

返回文章
返回