相依区间删失数据下可加可乘模型的半参数分析

Semiparametric analysis of additive-multiplicative hazards model with informative interval-censored data

  • 摘要: 区间删失数据是生存分析中常见的数据类型,且在实际问题中感兴趣的失效时间与观测时间之间具有相依性,忽略这种相依性可能会带来有偏的分析结果. 在相依Ⅱ型区间删失下考虑可加可乘模型的半参数回归分析,引入了一个脆弱项来刻画观测时间和失效时间之间的相关性,并分别对失效时间和观测时间构建相应的可加可乘脆弱模型. 为了估计参数,提出了一种基于伯恩斯坦多项式的Sieve极大似然估计方法,并结合EM算法对感兴趣的参数进行估计. 然后,大量的模拟研究表明所提出的方法表现良好. 最后将所提出的方法应用于一项年龄相关性眼病研究中产生的真实数据,分析结果表明模型拟合效果优良.

     

    Abstract: Interval-censored data is a common data type in survival analysis, and the failure time we are interested in is dependent on the observation time in practical problems. Ignoring the dependence may lead to biased analysis results. We consider the semi-parametric regression analysis of additive-multiplicative hazards models with informative Case Ⅱ interval-censored data. We introduce a frailty to characterize the correlation among the observation time and the failure time, and construct the corresponding additive-multiplicative frailty model for the failure time and the observation time, respectively. In order to estimate the parameters, we propose a Sieve maximum likelihood estimation method based on Bernstein polynomials, and combine it with EM algorithm to estimate the parameters of interest. Then, an extensive simulation study suggests that the proposed method performs well. Finally, the proposed method is applied to the real data generated in the age-related eye disease study, and the analysis revealed that the model exhibited excellent fitting performance.

     

/

返回文章
返回