\mathcalI_sn -连通空间与度量空间的像

\mathcalI_sn\text- connected spaces and the images of metric spaces

  • 摘要: 在理想收敛的意义下讨论了Tkachuk’s提出的问题:Tychonoff连通的序列空间是否是连通度量空间的商映射像?证明了令 \mathcalI \textN 上的一个理想,拓扑空间 X 是具有 \mathcalI_sn\text-csf- 网络的 \mathcalI_sn\text- 连通空间当且仅当 X \mathcalI_sn\text- 连通度量空间的连续 \mathcalI\text- 序列覆盖映射的像. 因此 X 是具有 \mathcalI_sn\text-csf- 网络的连通 \mathcalI_sn\text- 序列空间当且仅当 X \mathcalI_sn\text- 连通度量空间的商 \mathcalI\text- 序列覆盖映射的像. 从而部分解决了Tkachuk’s提出的这个问题.

     

    Abstract: We discuss the following Tkachuk’s question in the sense of ideal convergence: Is any Tychonoff connected sequential space a quotient image of a connected metric space? It is proved that let \mathcalI be an ideal on the set N then a topological space X is an \mathcalI_sn -connected space with an \mathcalI_sn -csf-network if and only if X is a continuous \mathcalI -covering image of a \mathcalI_sn\text- connected metric space. It follows that a topological space X is a connected \mathcalI_sn -sequential space with an \mathcalI_sn -csf-network if and only if X is a quotient \mathcalI -covering image of a \mathcalI_sn -connected metric space. Thus we partially resolved the problem raised by Tkachuk's.

     

/

返回文章
返回