多尺度特征融合增强的短期电力负荷预测深度学习网络

Multi-scale feature fusion enhanced short term power load forecasting deep learning network

  • 摘要: 用户用电负荷受多尺度因素的影响,针对多尺度特征融合不充分会导致预测精度低的问题,提出一种基于多尺度特征融合增强的深度网络预测方法. 首先,利用变分模态分解(VMD)算法将负荷数据分解为多个带有不同特征的子序列;然后,利用多个时间卷积网络(TCN)对这不同的子序列以及气象因素进行特征提取与学习,将TCN网络提取的多个特征与经过One-Hot编码的日期因素融合为一个包含多尺度信息的特征向量,使用Multi-Head Attention多头注意力机制新的特征向量进行特征增强;最后,使用全连接层得到最终的预测值. 通过实验验证表明,新方法预测负荷的均方根误差为100.28 MW,平均绝对百分比误差为1.2%,比较于现有的模型该方法具有更高的预测精度.

     

    Abstract: Customer load is affected by multi-scale factors. Aiming at the problem that insufficient multi-scale feature fusion will lead to low prediction accuracy, this paper proposes a deep network prediction method based on multi-scale feature fusion enhancement. Firstly, variational mode decomposition (VMD) algorithm is used to decompose load data into multiple sub-sequences with different features. Secondly, multiple time convolutional networks (TCN) are used to extract and learn features of these different sub-sequences and meteorological factors, and multiple features extracted by TCN network and date factors encoded by One-Hot are fused into a feature vector containing multi-scale information. The new feature vector of the Multi-Head Attention mechanism is used for feature enhancement, and the final predicted value is obtained by using the fully connected layer. Finally, the experimental results show that the root-mean-square error of the proposed method is 100.28 MW and the average absolute percentage error is 1.2%. Compared with the existing model, the proposed method has a higher prediction accuracy.

     

/

返回文章
返回