Abstract:
Let
n = \ 1,2, \cdots ,n\ 
be a set ordered in the standard way, and let
PO_n 
be the partial order-preserving semigroup on
n 
. Let
\alpha \in PO_n 
, If
\alpha ^2 = \alpha 
, then
\alpha 
is an idempotent element. Thus we call that
\alpha 
is a squasi-idempotent element if
\alpha ^2 \ne \alpha 
and
\alpha ^2 
is an idempotent element. We study the maximal subsemigroups and square idempotent elements of semigroup
PO_n 
, and provided the structure and complete classification of the maximal idempotent generating subsemigroup of
PO_n 
(
n \geqslant 5 
) by the squasi-idempotents.