基于流行度和质量偏好建模的去偏推荐系统

Debiasing in recommendations via modeling popularity and quality preference

  • 摘要: 个性化推荐系统在生成推荐列表时,通常过度关注流行的物品,忽视了用户对推荐集合的相关性和多样性的需求. 因此,消除推荐系统中的流行度偏差成为了一个广泛关注的问题. 尽管最先进的因果推断方法已经揭示了用户-物品交互与流行度之间的复杂联系,并在减轻流行度偏差方面取得了一定成效,但现有研究往往未能对流行度分布的时间动态性进行建模,导致去偏不彻底,进而影响推荐结果的多样性. 因此,提出了一种创新的去偏机制—用户对物品流行度和质量偏好的建模(modeling popularity and quality preference of users, MPQP),旨在解决流行度偏差对推荐模型的影响. 具体来说,MPQP在因果推断过程中引入了时间分隔的物品流行度分布,以捕捉用户对流行度的偏好. 此外,MPQP还纳入了物品质量分布,以模拟用户对质量的偏好. 实验结果表明,MPQP在性能上明显超越了当前最先进的基准方法.

     

    Abstract: Personalized recommender systems often focus excessively on popular items when generating recommendation lists, ignoring the user's need for relevance and diversity in the recommendation set. Therefore, eliminating the popularity bias in recommender systems has become a widely concerned problem. Although state-of-the-art causal inference methods have revealed the complex connection between user-item interactions and popularity and achieved some success in mitigating popularity bias, existing studies often fail to model the temporal dynamics of popularity distributions, which leads to incomplete debiasing and, consequently, affects the diversity of recommendation results. Therefore, an innovative debiasing mechanism, modeling popularity and quality preference of users (MPQP) is proposed, aiming to address the impact of popularity bias on recommendation models. Specifically, MPQP introduces time-separated item popularity distributions in the causal inference process to capture users' preference for popularity. In addition, MPQP incorporates item quality distributions to model user preferences for quality. Experimental results show that MPQP significantly outperforms current state-of-the-art benchmark methods in terms of performance.

     

/

返回文章
返回