关于2个有限n-幂零群积的一些结果

Some results on the product of two finite n-nilpotent groups

  • 摘要: G 为有限群,证明了如果 G n -中心通过 n -幂零群扩张的群,则 G n -幂零群. 进一步,还证明了如果 G AB的乘积,其中AB G n -幂零正规子群,并且A中的元与B中的元 n -可交换,则 G n -幂零群. 主要定理推广了幂零群的相应结果,也拓展了Baer关于 n -幂零群的结果.

     

    Abstract: Let G be a finite group. We prove that if G is a group which is an extension of a n-central group by a n-nilpotent group, then G is a n-nilpotent group. Furthermore, it is also proved that if G is a product of A and B, where A and B are n-nilpotent normal subgroups of G, and every element of A is n-commutative with every element of B, then G is a n-nilpotent group. The main theorems generalize the corresponding results on nilpotent groups and also extend Baer's results on n-nilpotent groups.

     

/

返回文章
返回