基于改进鱼鹰优化算法及其在短期网络流量异常检测中的应用

Based on the improved osprey optimization algorithm and its application in short-term network traffic anomaly detection

  • 摘要: 为了有效处理网络流量数据的随机性和不稳定性对数据传输的影响,首先通过主成分分析(principal component analysis,PCA)对网络流量数据进行特征降维,以提升数据的质量和稳定性;然后,引入Tent混沌映射、动态反向学习和自适应步长策略对鱼鹰优化算法进行改进,改进后的鱼鹰优化算法(improved osprey optimization algorithm ,IOOA)提高了全局搜索能力和局部搜索精度,同时增强了跳出局部最优值的能力;接着,使用改进鱼鹰优化算法精细优化深度极限学习机(deep extreme learning machine,DELM)参数;其次,构建PCA-IOOA-DELM多步短期网络流量异常检测模型;最后,将该模型用于网络流量的分类与异常检测. 仿真实验结果表明,相较于其它检测模型,提出的PCA-IOOA-DELM检测模型在短期网络流量异常检测的准确性和精确度方面均展现出显著优势,有效地提高了异常流量的识别能力.

     

    Abstract: In order to effectively deal with the impact of the randomness and instability of network traffic data on data transmission, this study first performs feature dimension reduction on network traffic data through principal component analysis (PCA) to improve the quality and stability of the data. The Osprey optimization algorithm (IOOA) is improved by introducing Tent chaotic mapping, dynamic reverse learning and adaptive step size strategy. The improved IOOA improves the global search ability and local search accuracy, and enhances the ability to jump out of the local optimal value. The parameters of deep extreme learning machine (DELM) are finely optimized using the improved Osprey optimization algorithm. Secondly, PCA-IOOA-DELM multi-step short-term network traffic anomaly detection model is constructed. Finally, the model is applied to the classification and anomaly detection of network traffic. The simulation results show that compared with other detection models, the PCA-IOOA-DELM detection model proposed in this study shows significant advantages in the accuracy and precision of short-term network traffic anomaly detection, and effectively improves the ability to identify abnormal traffic.

     

/

返回文章
返回