高效挖掘拓扑和协作特征的稀疏QoS预测

Sparse QoS prediction via effective mining topology and collaborative features

  • 摘要: 协作服务质量(quality of services, QoS)预测最近引起了广泛关注,主要关注根据用户过去使用云服务的体验来预测缺失值. 针对稀疏数据场景下的QoS预测精度提升问题,提出了一种由两个专门定制的组件组成的拓扑和协作特征编码器架构(opological and collaborative feature enTcoder architecture,TCFE),用于稀疏QoS预测. 首先,拓扑特征编码器组件考虑网络拓扑信息和用户到服务的通信路径特征,从而提高网络拓扑的建模和路径提取能力;然后,协作特征编码器组件利用图卷积网络在用户-服务交互二部图上增强了用户/服务的嵌入;最后,利用Kolmogorov-Arnold网络实现了协作和上下文特征的有效集成和提取. 实验结果表明,TCFE在准确性和效率方面优于一些最先进的QoS预测方法.

     

    Abstract: Collaborative quality of services (QoS) prediction has gained considerable attention lately, focusing on predicting missing values based on past user experiences with cloud services. To address the problem of improving QoS prediction accuracy under sparse data scenarios, a topology and collaborative feature encoder architecture (TCFE) consisting of two specially tailored components is proposed for sparse QoS prediction. First, the topology feature encoder component considers network topology information and user-to-service communication path features to improve network topology modeling and path extraction; then the collaborative feature encoder component enhances user/service embedding on the user-service interaction bipartite graph by using graph convolutional networks, and finally the Kolmogorov-Arnold network is used to achieve the effective integration and extraction of collaboration and contextual features. Experimental results show that TCFE outperforms some state-of-the-art QoS prediction methods in terms of accuracy and efficiency.

     

/

返回文章
返回