咖啡渣衍生原位氮掺杂多孔碳构筑高性能锂硫电池正极材料

Waste coffee ground derived in-situ nitrogen doped porous carbon for constructing high-performance Li-S battery cathode

  • 摘要: 以废弃咖啡渣为原料,ZnCl2和FeCl3为双金属活化剂,采用同步活化碳化方法制备原位氮掺杂的多孔碳材料,并用于构筑高性能锂硫电池正极材料. 运用SEM、XRD、XPS、氮气吸脱附测试对制备材料的结构、形貌、化学组成和多孔结构进行表征;并通过恒电流充放电循环、交流阻抗和循环伏安测试,研究了锂硫电池的放电容量、倍率性能、循环稳定性、动力学及阻抗变化. 结合多硫化物的吸附实验以及循环后电池组件的分析,探究了多孔结构和原位氮掺杂对电化学性能的影响. 结果表明,制备的多孔碳材料具有901.2 m2·g −1的比表面积和0.52 cm3·g−1的孔容,且具有1.74%的氮掺杂. 基于多孔结构和掺杂氮原子对多硫化锂的物理化学协同吸附作用,相应的多孔碳/硫复合正极材料在0.2 C释放905.6 mA·h·g−1 的首次放电比容量,循环200次后保留605.9 mA·h·g−1,在1.0 C倍率的首次放电容量为613.9 mA·h·g−1,可实现1000次的长循环稳定性. 这一策略为废弃咖啡渣的有效利用提供了新途径.

     

    Abstract: Herein, an in-situ nitrogen doped porous carbon material is prepared by using waste coffee grounds, ZnCl2 and FeCl3 bimetallic salt activation/catalyst via a simultaneous activation carbonization method, whilst using to construct the high-performance cathode materials of lithium-sulfur batteries. The structure, morphology, chemical composition, and porous structure of the as-prepared materials are characterized using SEM, XRD, XPS, and nitrogen adsorption-desorption tests. And the discharge capacity, rate performance, cycling stability, kinetics and resistance change of the lithium-sulfur batteries are investigated by galvanostatic charge-discharge cycling, electrochemical impedance spectroscopy, and cyclic voltammetry tests. Combined with the adsorption of lithium polysulfides and component analysis of the cycled batteries, the influence of porous structure and in-situ nitrogen doping on electrochemical performance is also explored. Results show that the as-prepared porous carbon material has a specific surface area of 901.2 m·g−1 and a pore volume of 0.52 cm³·g−1, whilst exhibiting 1.74% nitrogen doping. On the basis of the physicochemical synergistic adsorption of lithium polysulfides by porous structure and nitrogen doping, The corresponding porous carbon/sulfur composite cathode material exhibits a first discharge capacity of 905.6 mA·h·g−1 at 0.2 C and retains 605.9 mA·h·g−1 after 200 cycles. At a high rate of 1.0 C, a first discharge capacity of 613.9 mA·h g−1 can be obtained, whilst a long-term cycling stability over 1000 cycles is also achieved. This strategy provides a new approach for the effective utilization of waste coffee ground.

     

/

返回文章
返回