幂零IFP半环的一些性质

Some properties of nilpotent IFP semirings

  • 摘要: 研究了一类新的广义IFP半环. 一个半环R被称为左幂零IFP半环,如果对于任意的 a \in N(R) b \in R ab = 0 可推出 aRb = 0 ,这里 N(R) 表示R的所有幂零元的集合. 我们刻画了这类半环的一些性质,给出了它的相关例子,从而说明了这类半环并不是IFP半环. 我们也考虑这类半环的一些扩张. 最后,给出非交换的超图半群的定义,刻画了具有诣零IFP性质的超图半群.

     

    Abstract: We introduce and study a new class of generalized IFP semirings which is called left nilpotent IFP semirings. A semiring R is said to be left nilpotent IFP semiring if for any a \in N(R) , b \in R , ab = 0 implies aRb = 0 , where N(R) denotes the set of all nilpotent elements in R . It is shown that a left nilpotent IFP semiring need not to be IFP. Various properties of this class of semirings are studied and characterized. We also consider some kinds of extensions of left nilpotent IFP semirings. Finally, the definition of non-commutative hypergraph semigroup is given, and the hypergraph semigroups with nil-IFP are described.

     

/

返回文章
返回