基于双域提取和坐标关注的红外小目标检测

Infrared small target detection based on dual-domain extraction and coordinate attention

  • 摘要: 针对红外小目标检测过程中因目标尺寸偏小、纹理特征不足以及复杂背景干扰等原因造成的模型漏检和误检问题, 提出了一种双域提取和坐标关注检测网络. 首先,为了提高检测概率,设计了双域特征提取模块,该模块在空间域通过中心差分卷积提取局部特征,同时在频域通过信号处理与自适应深度学习过程结合的方式,聚合图像的全局信息,避免漏检. 其次,提出了坐标激励注意力模块,利用注意力机制的特性,在特征映射中突出目标显著性,抑制背景干扰,以降低复杂场景下的虚警率. 最后,针对多次下采样可能导致的目标特征丢失问题,设计了全局上下文提取模块,通过多尺度普通卷积和多尺度空洞卷积的结合,有效提取了目标的多层次特征表征,进一步降低了漏检率. 在4个公共数据集上的实验结果表明,该方法优于其他先进方法. 尤其在IRSTD1k数据集上,本文方法的MIoUNIoUF1分数3个评价指标分别达到了72.23%,68.85%,83.89%.

     

    Abstract: To address the issues of missed and false detections in infrared small-target detection caused by small target sizes, insufficient texture features, and complex background interference, this paper proposes a dual-domain feature extraction and coordinate attention detection network. Firstly, to enhance detection probability, a dual-domain feature extraction module is designed. This module extracts local features in the spatial domain using central difference convolution and aggregates global image information in the frequency domain through a combination of signal processing and adaptive deep learning, effectively avoiding missed detections. Secondly, a coordinate-activated attention module is proposed. By leveraging the characteristics of attention mechanisms, this module emphasizes the saliency of the target in feature maps while suppressing background interference, significantly reducing false alarms in complex scenarios. Lastly, to address the issue of feature loss caused by repeated downsampling, a global context extraction module is designed. This module combines multi-scale standard convolution with multi-scale dilated convolution to effectively extract multi-level feature representations of the target, further reducing missed detections. Experimental results on four public datasets demonstrate that the proposed method outperforms existing advanced methods. Specifically, on the IRSTD1k dataset, the proposed method achieves mIoU, nIoU, and F1 score of 72.23%, 68.85%, and 83.89%.

     

/

返回文章
返回