五次修正μ-Camassa-Holm方程周期尖峰解的轨道稳定性*

Orbital stability of periodic peakons for a quintic \mu ~modified-Camassa-Holm equation

  • 摘要: 研究了一个具有五次非线性项的修正 \mu -Camassa-Holm方程,该方程是一个五次广义Camassa-Holm方程的 \mu 形式推广. 首先,通过对修正的Lagrange量应用变分原理,推导出了所要研究的方程,然后通过给出其合适的弱解的定义,导出了该方程的周期尖峰解,并证明了这种解在 H^1 意义下是轨道稳定的.

     

    Abstract: We study the orbital stability of periodic peakons for a generalized \mu -modified-Camassa-Holm equation with quintic nonlinearities, which is a \mu -version for a generalized Camassa–Holm equation with quintic nonlinearities. First, we derive such equation via variational principle throw a modified Lagrangian, then we show the quintic \mu mCH equation admits periodic peakons, and finally we prove that the periodic peakons of quintic \mu mCH equation are orbitally stable under small perturbations in the H^1 space.

     

/

返回文章
返回