含时变系数的Kirchhoff方程演化过程的长时间行为

Long-time behavior for evolution processes associated with Kirchhoff equations with time-dependent coefficients

  • 摘要:
    考虑了一类Kirchhoff方程
    \begincases (\alpha (t)u_t)_t-\phi (\left|\left|\nabla u\right|\right|^2)\Delta u+\gamma (t)u_t+\delta (t)u=\phi (\left|\left|\nabla u\right|\right|^2)f(u),x\in \Omega ,t > \tau ,\\u(x,t)=0,x\in \partial \Omega ,t > \tau ,\\u(x,\tau )=u_\tau (x),u_t(x,\tau )=v_\tau (x),x\in \Omega ,\endcases
    其中 \Omega \mathbfR^N 中的有界光滑区域, N\geq 3,\tau \in \mathbfR f 是实值函数且具有适当的增长性,正则性和耗散性条件; \alpha ,\gamma ,\delta 是实值函数且具有适当的增长性,正则性条件. 运用非自治双曲问题的非线性演化过程理论,证明了该问题的局部可解性. 进而利用时间变换,在适当的空间中证明了该问题生成的演化过程的拉回吸引子的存在性及其上半连续性.

     

    Abstract: We consider the Kirchhoff equations   \qquad\begincases (\alpha (t)u_t)_t-\phi (\left|\left|\nabla u\right|\right|^2)\Delta u+\gamma (t)u_t+\delta (t)u=\phi (\left|\left|\nabla u\right|\right|^2)f(u),x\in \Omega ,t > \tau ,\\u(x,t)=0,x\in \partial \Omega ,t > \tau ,\\u(x,\tau )=u_\tau (x),u_t(x,\tau )=v_\tau (x),x\in \Omega ,\endcases where \Omega is a bounded smooth domain in \mathbfR^N , N\geq 3, \tau \in \mathbfR , f is a real valued function of a real variable with some suitable conditions of growth, regularity and dissipativity, \alpha ,\gamma ,\delta are continuous real valued functions of a real variable with some suitable conditions of growth, regularity. we obtain a result of local solvability for the problem using the theory of nonlinear evolution process from non-autonomous hyperbolic problems. By applying a suitable time rescaling transformation we prove the existence and upper semicontinuity of the pullback attractors initial-boundary value problem in a suitable space.

     

/

返回文章
返回