PASTNet:基于原型模式驱动的轻量级交通流量预测模型

PASTNet: A prototype-pattern-driven lightweight model for traffic flow forecasting

  • 摘要: 道路交通流量的时空预测是智能交通系统中的关键任务. 现有方法多依赖深层时空注意力机制或图卷积来捕获道路间的时空依赖,但这些方法通常伴随高复杂度和较大的计算开销. 通过实验观察发现同一城市的交通流量呈现出高度重复的模式,基于此,假设海量交通序列可以通过有限的原型模式进行刻画. 为验证这一假设的有效性,提出了一种基于原型模式驱动的轻量级交通流量预测模型PASTNet. PASTNet的核心创新包括:(1)从历史数据中提取原型模式,通过将这些原型作为先验知识嵌入模型,有效引导预测过程;(2)依靠“星”操作来搭建轻量模型,并且得到高维特征,从而在保持高性能的同时显著降低计算成本. 在大规模的真实交通数据集上对模型进行了实证评估. 实验结果表明,PASTNet与现有的先进交通预测模型相比,在预测精度与计算效率方面均取得了显著优于现有先进模型的表现.

     

    Abstract: Spatiotemporal forecasting of road traffic flow is a key task in intelligent transportation systems. Existing methods often rely on deep spatiotemporal attention mechanisms or graph convolutional networks to capture inter-road dependencies, but these designs typically incur high model complexity and computational cost. From empirical observations, we find that traffic flows within the same city exhibit highly repetitive patterns. Accordingly, we hypothesize that large-scale traffic sequences can be characterized by a finite set of prototype patterns. To validate this hypothesis, we propose PASTNet, a prototype-pattern-driven lightweight model for traffic flow forecasting. The core innovations of PASTNet are: (1) extracting prototype patterns from historical data and embedding them as priors to effectively guide the prediction process; and (2) employing a “star” operation to construct a compact network that still yields high-dimensional representations, thereby substantially reducing computation while maintaining strong performance. We conduct extensive empirical evaluations on large-scale real-world traffic datasets. Experimental results demonstrate that, compared with representative state-of-the-art traffic forecasting models, PASTNet achieves superior predictive accuracy and computational efficiency.

     

/

返回文章
返回