交换环上的FIn-内射模和FIn-平坦模

FIn-injecive and FIn-flat modules over commutative rings

  • 摘要: R 是交换环, 任意正整数 n \gt 1 , 引入了FIn-内射模和FIn-平坦模. 证明了 R -模 M 是FIn-内射模当且仅当 R -模 M 是FPn-内射预盖 f\colon A\rightarrow B 的核, 这里 A 是内射 R -模. 给出了 R M 是约化的FIn-内射模当目仅当 R -模 M 是FPn-内射盖 f\colon A\rightarrow B 的核, 这里 A 是内射 R 模. 证明了 R -模 M 是FIn-内射模当且仅当 M 是一个内射 R -模与一个约化的FIn-内射 R -模的直和. 最后, 证明了在 n -遗传环下, FIn-平坦模的等价刻画.

     

    Abstract: Let R be a commutative ring, n \gt 1 an integral number. FIn-injecive and FIn-flat modules are introduced. We prove that an R -module M is FIn-injecive if and only if M is a kernel of an FPn-injecive precover f\colon A\rightarrow B with A is injective. It indicates that an R -module M is a reduced FIn-injective module if and only if M is a kernel of an FPn-injecive cover f\colon A\rightarrow B with A is injective. We obtain that an R -module M is FIn-injecive if and only if M is a direct sum of an injective R -module and a reduced FIn-injective module. Finally, we give the sufficient and necessary conditions when every R -module is FIn-flat, if R is n -hereditary.

     

/

返回文章
返回