群代数上模的纤维维数

Fibrant dimension of modules over group algebras

  • 摘要:k为交换环,G为任意群,kG为群代数. 主要研究群代数kG上模的纤维维数. 首先建立模的纤维维数与内射维数,Gorenstein内射维数之间的关系,其次给出模的纤维维数的等价刻画,最后讨论模的纤维预包络的存在性及其与Gorenstein内射预包络的关系.

     

    Abstract: Let k be a commutative ring, G be a group, and kG be the group algebra. We mainly study the fibrant dimension of modules over the group algebra kG. First, we establish the relationships between the fibrant dimension of modules and injective dimension, Gorenstein injective dimension. Then, we give some equivalent characterizations of the fibrant dimension of modules. Finally, we discuss the existence of fibrant preenvelopes of modules and their relationship with Gorenstein injective preenvelopes.

     

/

返回文章
返回