广义对称正则长波方程的一个拟紧致守恒差分格式
A pseudo-compact conservation difference scheme for generalized symmetrical regularized long wave equation
-
摘要: 对一类广义对称正则长波(GSRLW)方程的初边值问题进行了数值研究,提出了一个两层拟紧致差分格式,格式模拟了初边值问题的守恒性质,并利用离散泛函分析方法分析了该格式的二阶收敛性与稳定性.数值结果表明,该格式的精度明显好于一般的二阶格式.Abstract: The numerical solution for an initial-boundary value problem of generalized symmetrical regularized long wave equation (GSRLW) is considered.Apseudo-compact finite difference scheme of two levels is proposed.This scheme simulates the conservation properties of the problem well.It is proved that the finite difference scheme is convergent with order 2 and stable by discrete functional analysis method.The numerical examples show that the accuracy of this scheme is better than usual difference scheme of two levels.