模糊直线上模糊数值函数的Henstock积分

The Henstock integral of a fuzzy number-valued function over adirected line

  • 摘要: 为了完善模糊积分理论和解决实际问题的需要,定义了模糊直线上模糊数值函数的Henstock积分,并利用区间上模糊数值函数的Henstock积分,向量值函数的Henstock积分,以及实值函数的Henstock积分对其进行了刻划;其次,讨论了模糊直线上模糊数值函数导函数的可积性问题,发现了积分的Newton-Leibniz公式;最后通过一具体的例子说明了Henstock积分的广泛性.这些结果均推广了前人的工作.

     

    Abstract: Firstly,in order to complete the theory of fuzzy integrals and meet the need ofpractical problems,the concept of the Henstock integral of a fuzzy number-valued function over a directed lineis proposed and the properties of this integral are discussed by means of the Henstock integralof interval-valued functions,vector-valued functions and real-valued functions.Secondly,the integrability of the fuzzy derivative function over the fuzzy line is discussed and the Newton-Leibniz formula is obtained.Finally,an example shows that the results discussed in this paper generalize the previous work.

     

/

返回文章
返回