一类二阶离散Hamiltonian系统的同宿解

Homoclinic solutions for a class of the second order discrete Hamiltonian systems

  • 摘要: 研究了一类二阶离散Hamiltonian系统的非平凡同宿解的存在性.首先构造与原系统相关的一列周期系统;然后在一定条件下利用山路定理得到这些系统的非平凡2kT-周期解;最后通过极限得到原系统的非平凡同宿解.

     

    Abstract: We study the existence of nontrivial homoclinic solution for the second order discrete Hamiltonian system.At first,one sequence of periodic systems is constructed with the original system.Then,under certain conditions,nontrivial 2kT-periodic solutions of these systems are got by mountain theorem.Finally,a homoclinic solution is obtained as a limit of these 2kT-periodic solutions.

     

/

返回文章
返回