融合Mashup内协作关系的图卷积Web API推荐

Graph convolutional Web API recommendation incorporating collaboration relations within Mashups

  • 摘要: 为了更好地缓解Web API推荐中的数据稀疏问题,提出了一种基于轻量图卷积网络的Web API推荐模型CoNetLGN. CoNetLGN将同一个Mashup内所调用的Web API视作具有协作关系,将其挖掘出表示为一个API协作图,作为辅助信息增强推荐性能. 首先,在CoNetLGN中,每个用户和Web API的表示通过轻量图卷积层在用户-API交互图中传播,与此同时,API的表示还会在API协作图中传播;然后,设计了一种图融合操作,用于在传播过程中聚合API在两个图中的表示;最后,再用加权和将每一层学习到的表示结合起来. 在Programmable Web数据集上进行的实验结果表明,提出的CoNetLGN模型在对用户做Web API推荐时较其他3种较有代表性的协同过滤方法有更好的表现.

     

    Abstract: To address the issue of data sparsity in Web API recommendation, this paper proposes a Web API recommendation model called CoNetLGN based on the Light Graph Convolution Network. CoNetLGN leverages the collaboration among Web APIs invoked within the same Mashup to construct an API collaboration graph as auxiliary information, thereby enhancing recommendation performance. In CoNetLGN, user and Web API representations are propagated in the user-API interaction graph through a light graphs convolution layer. Simultaneously, API representations are propagated in the API collaboration graph. Paper designs a graph fusion operation to fusion API representation from both graphs during propagation. Finally, model weight and combine the learned representations at each layer. Experimental results on the Programmable Web dataset demonstrates that proposed CoNetLGN outperforms three representative collaborative filtering methods in recommending Web APIs to users.

     

/

返回文章
返回